Treffer: ETECADx: Ensemble Self-Attention Transformer Encoder for Breast Cancer Diagnosis Using Full-Field Digital X-ray Breast Images.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:480-483. (PMID: 36086171)
IEEE Trans Biomed Eng. 2022 May;69(5):1639-1650. (PMID: 34788216)
Comput Methods Programs Biomed. 2019 Aug;177:89-112. (PMID: 31319964)
Front Pharmacol. 2022 Jul 22;13:929755. (PMID: 35935827)
Breast. 2022 Dec;66:15-23. (PMID: 36084384)
J Biomol Struct Dyn. 2021 Sep;39(15):5682-5689. (PMID: 32619398)
Artif Intell Med. 2020 Mar;103:101749. (PMID: 32143786)
Sci Rep. 2019 Aug 29;9(1):12495. (PMID: 31467326)
Sensors (Basel). 2022 Jun 30;22(13):. (PMID: 35808433)
Int J Med Inform. 2018 Sep;117:44-54. (PMID: 30032964)
Diagnostics (Basel). 2022 Nov 16;12(11):. (PMID: 36428875)
Biomedicines. 2022 Nov 18;10(11):. (PMID: 36428538)
Diagnostics (Basel). 2022 Jun 25;12(7):. (PMID: 35885455)
Med Image Anal. 2017 Jan;35:303-312. (PMID: 27497072)
J Med Imaging Radiat Oncol. 2021 Aug;65(5):545-563. (PMID: 34145766)
Environ Res. 2005 Jun;98(2):250-7. (PMID: 15820732)
CA Cancer J Clin. 2021 May;71(3):209-249. (PMID: 33538338)
J Glob Oncol. 2019 Nov;5:1-6. (PMID: 31721627)
Biology (Basel). 2021 Dec 17;10(12):. (PMID: 34943262)
Comput Methods Programs Biomed. 2021 Mar;200:105823. (PMID: 33190942)
Comput Methods Programs Biomed. 2020 Nov;196:105584. (PMID: 32554139)
Artif Intell Med. 2022 Dec;134:102419. (PMID: 36462904)
Diagnostics (Basel). 2022 Jul 28;12(8):. (PMID: 36010164)
Appl Intell (Dordr). 2021;51(5):2890-2907. (PMID: 34764573)
Med Phys. 2022 Sep;49(9):5787-5798. (PMID: 35866492)
J Imaging. 2022 May 20;8(5):. (PMID: 35621905)
J Adv Res. 2022 Sep 7;:. (PMID: 36084812)
Acad Radiol. 2012 Feb;19(2):236-48. (PMID: 22078258)
PLoS One. 2022 Jan 27;17(1):e0263126. (PMID: 35085352)
J Imaging. 2021 Sep 18;7(9):. (PMID: 34564116)
J Med Syst. 2019 Jul 3;43(8):263. (PMID: 31270634)
Comput Methods Programs Biomed. 2018 Apr;157:85-94. (PMID: 29477437)
IEEE Trans Pattern Anal Mach Intell. 2022 Feb 18;PP:. (PMID: 35180075)
Comput Biol Med. 2021 Apr;131:104245. (PMID: 33556893)
Weitere Informationen
Early detection of breast cancer is an essential procedure to reduce the mortality rate among women. In this paper, a new AI-based computer-aided diagnosis (CAD) framework called ETECADx is proposed by fusing the benefits of both ensemble transfer learning of the convolutional neural networks as well as the self-attention mechanism of vision transformer encoder (ViT). The accurate and precious high-level deep features are generated via the backbone ensemble network, while the transformer encoder is used to diagnose the breast cancer probabilities in two approaches: Approach A (i.e., binary classification) and Approach B (i.e., multi-classification). To build the proposed CAD system, the benchmark public multi-class INbreast dataset is used. Meanwhile, private real breast cancer images are collected and annotated by expert radiologists to validate the prediction performance of the proposed ETECADx framework. The promising evaluation results are achieved using the INbreast mammograms with overall accuracies of 98.58% and 97.87% for the binary and multi-class approaches, respectively. Compared with the individual backbone networks, the proposed ensemble learning model improves the breast cancer prediction performance by 6.6% for binary and 4.6% for multi-class approaches. The proposed hybrid ETECADx shows further prediction improvement when the ViT-based ensemble backbone network is used by 8.1% and 6.2% for binary and multi-class diagnosis, respectively. For validation purposes using the real breast images, the proposed CAD system provides encouraging prediction accuracies of 97.16% for binary and 89.40% for multi-class approaches. The ETECADx has a capability to predict the breast lesions for a single mammogram in an average of 0.048 s. Such promising performance could be useful and helpful to assist the practical CAD framework applications providing a second supporting opinion of distinguishing various breast cancer malignancies.