Treffer: Design of LNA Analogues Using a Combined Density Functional Theory and Molecular Dynamics Approach for RNA Therapeutics.
Chem Biol. 2001 Jan;8(1):1-7. (PMID: 11182314)
Acc Chem Res. 2011 Dec 20;44(12):1302-11. (PMID: 21899297)
J Chem Theory Comput. 2022 Feb 8;18(2):1241-1254. (PMID: 34990548)
J Phys Chem B. 2013 Jul 18;117(28):8408-21. (PMID: 23789789)
J Chem Inf Model. 2017 Nov 27;57(11):2846-2864. (PMID: 29028340)
J Med Chem. 2010 Feb 25;53(4):1636-50. (PMID: 20108935)
Am J Ophthalmol. 2002 Apr;133(4):467-74. (PMID: 11931780)
Chem Commun (Camb). 2014 Jan 18;50(5):575-7. (PMID: 24270219)
J Chem Theory Comput. 2009 Oct 13;5(10):2744-53. (PMID: 26631787)
Drug Metab Dispos. 2007 Mar;35(3):460-8. (PMID: 17172312)
Mol Biol (Mosk). 2021 Nov-Dec;55(6):1030-1044. (PMID: 34837707)
Mol Pharm. 2019 Jun 3;16(6):2265-2277. (PMID: 31063396)
Biochem Pharmacol. 2009 Aug 1;78(3):284-91. (PMID: 19393225)
J Phys Chem A. 2006 Nov 2;110(43):12005-9. (PMID: 17064189)
Nat Biotechnol. 2019 Jun;37(6):640-650. (PMID: 31036929)
Biochemistry. 2018 May 22;57(20):2971-2983. (PMID: 29683663)
J Mol Graph. 1996 Feb;14(1):33-8, 27-8. (PMID: 8744570)
Eur J Biochem. 2003 Apr;270(8):1628-44. (PMID: 12694176)
J Biochem Biophys Methods. 1990 Mar;20(3):259-67. (PMID: 2188993)
Biophys J. 2007 Jun 1;92(11):3817-29. (PMID: 17351000)
Antimicrob Agents Chemother. 2011 Jul;55(7):3105-14. (PMID: 21502629)
Drug Metab Dispos. 2019 Oct;47(10):1164-1173. (PMID: 31350288)
Nucleic Acids Res. 2018 Jun 20;46(11):5366-5380. (PMID: 29790953)
Nucleic Acids Res. 2004 Jun 04;32(10):3101-7. (PMID: 15181175)
Mol Ther Nucleic Acids. 2020 Dec 03;23:527-535. (PMID: 33510941)
Nucleic Acids Res. 2003 Feb 1;31(3):953-62. (PMID: 12560491)
Cancer Lett. 2008 Dec 8;272(1):148-59. (PMID: 18694621)
Biochim Biophys Acta. 1999 Dec 10;1489(1):117-30. (PMID: 10807002)
J Comput Chem. 2012 Feb 15;33(5):580-92. (PMID: 22162017)
Brain. 2020 Feb 1;143(2):407-429. (PMID: 31738395)
Nat Biotechnol. 2017 Sep;35(9):845-851. (PMID: 28829437)
Virol J. 2004 Nov 23;1:12. (PMID: 15560846)
J Biochem Biophys Methods. 2001 May 28;48(3):189-208. (PMID: 11384757)
Biotechnol Appl Biochem. 2021 Oct;68(5):1086-1094. (PMID: 32964539)
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. (PMID: 26583988)
J Am Chem Soc. 2020 Sep 23;142(38):16240-16253. (PMID: 32866014)
Cancer Res. 2004 May 15;64(10):3365-70. (PMID: 15150085)
Clin Exp Pharmacol Physiol. 2006 May-Jun;33(5-6):533-40. (PMID: 16700890)
J Chem Theory Comput. 2005 Jan;1(1):70-7. (PMID: 26641117)
J Am Chem Soc. 2013 Jan 30;135(4):1306-16. (PMID: 23265256)
J Nucleic Acids. 2012;2012:707323. (PMID: 23056920)
Sci Rep. 2021 Mar 18;11(1):6321. (PMID: 33737567)
J Chem Theory Comput. 2009 Apr 14;5(4):1166-79. (PMID: 26609626)
Biochem Pharmacol. 1995 Mar 30;49(7):929-39. (PMID: 7741765)
Nucleic Acids Res. 2007;35(2):687-700. (PMID: 17182632)
Nucleic Acids Res. 2006 Jan 31;34(2):564-74. (PMID: 16449200)
J Am Chem Soc. 2008 Apr 9;130(14):4886-96. (PMID: 18341342)
J Phys Chem B. 2013 Mar 21;117(11):3135-44. (PMID: 23438338)
J Med Chem. 2009 Jan 8;52(1):10-3. (PMID: 19086780)
J Mol Graph Model. 2021 Sep;107:107945. (PMID: 34102527)
Nucleic Acids Res. 1996 Sep 1;24(17):3357-63. (PMID: 8811090)
Annu Rev Pharmacol Toxicol. 2010;50:259-93. (PMID: 20055705)
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10257-10262. (PMID: 30237285)
J Biomol Struct Dyn. 2019 Jul;37(11):2823-2836. (PMID: 30284504)
J Org Chem. 2010 Mar 5;75(5):1569-81. (PMID: 20136157)
Biochim Biophys Acta. 1999 Dec 10;1489(1):167-79. (PMID: 10807006)
J Mol Graph Model. 2019 Dec;93:107445. (PMID: 31494536)
Mol Ther. 2017 May 3;25(5):1069-1075. (PMID: 28366767)
Angew Chem Int Ed Engl. 2012 Nov 5;51(45):11242-5. (PMID: 22915274)
Mol Cell. 2007 Oct 26;28(2):264-76. (PMID: 17964265)
Weitere Informationen
Antisense therapeutics treat a wide spectrum of diseases, many of which cannot be addressed with the current drug technologies. In the quest to design better antisense oligonucleotide drugs, we propose five novel LNA analogues (A1-A5) for modifying antisense oligonucleotides and establishing each with the five standard nucleic acids: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U). Monomer nucleotides of these modifications were considered for a detailed Density Functional Theory (DFT)-based quantum chemical analysis to determine their molecular-level structural and electronic properties. A detailed MD simulation study was done on a 14-mer ASO (5'-CTTAGCACTGGCCT-3') containing these modifications targeting PTEN mRNA. Results from both molecular- and oligomer-level analysis clearly depicted LNA-level stability of the modifications, the ASO/RNA duplexes maintaining stable Watson-Crick base pairing preferring RNA-mimicking A-form duplexes. Notably, monomer MO isosurfaces for both purines and pyrimidines were majorly distributed on the nucleobase region in modifications A1 and A2 and in the bridging unit in modifications A3, A4, and A5, suggesting that A3/RNA, A4/RNA, and A5/RNA duplexes interact more with the RNase H and solvent environment. Accordingly, solvation of A3/RNA, A4/RNA, and A5/RNA duplexes was higher compared to that of LNA/RNA, A1/RNA, and A2/RNA duplexes. This study has resulted in a successful archetype for creating advantageous nucleic acid modifications tailored for particular needs, fulfilling a useful purpose of designing novel antisense modifications, which may overcome the drawbacks and improve the pharmacokinetics of existing LNA antisense modifications.
(© 2023 The Authors. Published by American Chemical Society.)
The authors declare no competing financial interest.