Treffer: Predicting major adverse cardiovascular events after orthotopic liver transplantation using a supervised machine learning model: A cohort study.

Title:
Predicting major adverse cardiovascular events after orthotopic liver transplantation using a supervised machine learning model: A cohort study.
Authors:
Soldera J; Post Graduate Program at Acute Medicine and Gastroenterology, University of South Wales, Cardiff CF37 1DL, United Kingdom.; Postgraduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil. jonathansoldera@gmail.com., Corso LL; Department of Engineering, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil., Rech MM; School of Medicine, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil., Ballotin VR; School of Medicine, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil., Bigarella LG; School of Medicine, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil., Tomé F; Department of Engineering, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil., Moraes N; Department of Engineering, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil., Balbinot RS; School of Medicine, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Brazil., Rodriguez S; Postgraduate Program in Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil., Brandão ABM; Postgraduate Program in Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil., Hochhegger B; Postgraduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil.
Source:
World journal of hepatology [World J Hepatol] 2024 Feb 27; Vol. 16 (2), pp. 193-210.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Baishideng Publishing Group Country of Publication: United States NLM ID: 101532469 Publication Model: Print Cited Medium: Print ISSN: 1948-5182 (Print) NLM ISO Abbreviation: World J Hepatol Subsets: PubMed not MEDLINE
Imprint Name(s):
Publication: 2014- : Pleasanton, CA : Baishideng Publishing Group
Original Publication: Beijing, China : Baishideng
References:
J Cardiothorac Vasc Anesth. 2021 Jul;35(7):2063-2069. (PMID: 33750661)
J Clin Exp Hepatol. 2022 Jan-Feb;12(1):186-199. (PMID: 35068798)
J Hepatol. 2016 Sep;65(3):589-600. (PMID: 27212244)
Curr Opin Organ Transplant. 2008 Jun;13(3):280-4. (PMID: 18685318)
Clin Transplant. 2018 Apr;32(4):e13222. (PMID: 29436036)
Int J Cardiol Heart Vasc. 2021 Jan 18;32:100714. (PMID: 33521238)
Hepatology. 2014 Mar;59(3):1144-65. (PMID: 24716201)
Liver Transpl. 2008 Jun;14(6):886-92. (PMID: 18508373)
Liver Transpl. 2021 Jul;27(7):1007-1018. (PMID: 33606328)
JHEP Rep. 2020 Oct 09;2(6):100192. (PMID: 33163950)
Hepatology. 2018 Nov;68(5):2008-2015. (PMID: 29672903)
Biomed Res Int. 2017;2017:4081525. (PMID: 28164120)
World J Hepatol. 2020 Dec 27;12(12):1168-1181. (PMID: 33442446)
J Am Coll Cardiol. 2011 Jul 12;58(3):223-31. (PMID: 21737011)
Liver Transpl. 2012 Mar;18(3):370-5. (PMID: 22140067)
Ann Transplant. 2021 Dec 22;26:e934163. (PMID: 34934037)
Am J Transplant. 2016 Sep;16(9):2684-94. (PMID: 26946333)
Circulation. 2015 Nov 17;132(20):1920-30. (PMID: 26572668)
Hepatology. 2020 Jan;71(1):334-345. (PMID: 31342529)
World J Transplant. 2024 Mar 18;14(1):88891. (PMID: 38576762)
Hepatology. 2012 Nov;56(5):1741-50. (PMID: 22611040)
Circulation. 2022 Nov 22;146(21):e299-e324. (PMID: 36252095)
Circulation. 1999 Sep 7;100(10):1043-9. (PMID: 10477528)
Biomed Res Int. 2021 Jan 23;2021:6629060. (PMID: 33564677)
Nature. 2023 Apr;616(7956):259-265. (PMID: 37045921)
Hepatology. 2017 Dec;66(6):1968-1979. (PMID: 28703300)
Am J Transplant. 2013 Jan;13(1):184-91. (PMID: 23126562)
Arq Bras Cardiol. 2020 Apr;114(4):718-725. (PMID: 32491009)
Circ Res. 2017 Oct 13;121(9):1092-1101. (PMID: 28794054)
Int J Cardiovasc Imaging. 2013 Dec;29(8):1741-8. (PMID: 23974907)
Liver Transpl. 2012 Mar;18(3):355-60. (PMID: 22140006)
Eur Heart J Qual Care Clin Outcomes. 2020 Oct 1;6(4):243-253. (PMID: 32011663)
Blood. 2019 Mar 21;133(12):1371-1377. (PMID: 30642918)
Transplantation. 2009 Mar 15;87(5):763-70. (PMID: 19295324)
Int J Environ Res Public Health. 2018 Dec 19;15(12):. (PMID: 30572595)
Liver Transpl. 2010 May;16(5):550-7. (PMID: 20440764)
Transplantation. 2014 Jul 15;98(1):107-14. (PMID: 24621533)
Circulation. 2009 Sep 29;120(13):1189-94. (PMID: 19752326)
J Clin Med. 2018 Nov 08;7(11):. (PMID: 30413107)
Transplantation. 2017 Jul;101(7):1645-1657. (PMID: 28296809)
J Hepatol. 2020 Jul;73(1):202-209. (PMID: 32278004)
Liver Transpl Surg. 1996 Nov;2(6):426-30. (PMID: 9346688)
Liver Transpl. 2012 Oct;18(10):1140-6. (PMID: 22821899)
Am J Transplant. 2018 Jan;18 Suppl 1:172-253. (PMID: 29292603)
J Hepatol. 2021 Jul;75(1):142-149. (PMID: 33476745)
Liver Transpl. 2011 Mar;17(3):261-9. (PMID: 21384508)
Semin Liver Dis. 2008 Feb;28(1):59-69. (PMID: 18293277)
J Am Soc Echocardiogr. 2007 Sep;20(9):1021-41. (PMID: 17765820)
Circulation. 2012 Jul 31;126(5):617-63. (PMID: 22753303)
Front Med (Lausanne). 2020 Feb 05;7:27. (PMID: 32118012)
Liver Transpl. 2014 Nov;20(11):1306-16. (PMID: 25044256)
Best Pract Res Clin Anaesthesiol. 2020 Mar;34(1):51-68. (PMID: 32334787)
Am J Transplant. 2010 Jun;10(6):1420-7. (PMID: 20486907)
Hepatol Commun. 2017 Jul;1(5):429-438. (PMID: 29085919)
J Hepatol. 2011 Apr;54(4):810-22. (PMID: 21145840)
World J Hepatol. 2018 Nov 27;10(11):877-886. (PMID: 30533188)
Coron Artery Dis. 2019 Jan;30(1):51-58. (PMID: 30407210)
Transplantation. 2019 Jan;103(1):22-27. (PMID: 30335697)
Contributed Indexing:
Keywords: Liver transplantation; Machine learning; Major adverse cardiac events; Myocardial perfusion imaging; Stress test
Entry Date(s):
Date Created: 20240318 Latest Revision: 20241102
Update Code:
20250114
PubMed Central ID:
PMC10941741
DOI:
10.4254/wjh.v16.i2.193
PMID:
38495288
Database:
MEDLINE

Weitere Informationen

Background: Liver transplant (LT) patients have become older and sicker. The rate of post-LT major adverse cardiovascular events (MACE) has increased, and this in turn raises 30-d post-LT mortality. Noninvasive cardiac stress testing loses accuracy when applied to pre-LT cirrhotic patients.
Aim: To assess the feasibility and accuracy of a machine learning model used to predict post-LT MACE in a regional cohort.
Methods: This retrospective cohort study involved 575 LT patients from a Southern Brazilian academic center. We developed a predictive model for post-LT MACE (defined as a composite outcome of stroke, new-onset heart failure, severe arrhythmia, and myocardial infarction) using the extreme gradient boosting (XGBoost) machine learning model. We addressed missing data (below 20%) for relevant variables using the k-nearest neighbor imputation method, calculating the mean from the ten nearest neighbors for each case. The modeling dataset included 83 features, encompassing patient and laboratory data, cirrhosis complications, and pre-LT cardiac assessments. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC). We also employed Shapley additive explanations (SHAP) to interpret feature impacts. The dataset was split into training (75%) and testing (25%) sets. Calibration was evaluated using the Brier score. We followed Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for reporting. Scikit-learn and SHAP in Python 3 were used for all analyses. The supplementary material includes code for model development and a user-friendly online MACE prediction calculator.
Results: Of the 537 included patients, 23 (4.46%) developed in-hospital MACE, with a mean age at transplantation of 52.9 years. The majority, 66.1%, were male. The XGBoost model achieved an impressive AUROC of 0.89 during the training stage. This model exhibited accuracy, precision, recall, and F1-score values of 0.84, 0.85, 0.80, and 0.79, respectively. Calibration, as assessed by the Brier score, indicated excellent model calibration with a score of 0.07. Furthermore, SHAP values highlighted the significance of certain variables in predicting postoperative MACE, with negative noninvasive cardiac stress testing, use of nonselective beta-blockers, direct bilirubin levels, blood type O, and dynamic alterations on myocardial perfusion scintigraphy being the most influential factors at the cohort-wide level. These results highlight the predictive capability of our XGBoost model in assessing the risk of post-LT MACE, making it a valuable tool for clinical practice.
Conclusion: Our study successfully assessed the feasibility and accuracy of the XGBoost machine learning model in predicting post-LT MACE, using both cardiovascular and hepatic variables. The model demonstrated impressive performance, aligning with literature findings, and exhibited excellent calibration. Notably, our cautious approach to prevent overfitting and data leakage suggests the stability of results when applied to prospective data, reinforcing the model's value as a reliable tool for predicting post-LT MACE in clinical practice.
(©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.)

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.