Result: Mutual Information Guided Diffusion for Zero-Shot Cross-Modality Medical Image Translation.

Title:
Mutual Information Guided Diffusion for Zero-Shot Cross-Modality Medical Image Translation.
Source:
IEEE transactions on medical imaging [IEEE Trans Med Imaging] 2024 Aug; Vol. 43 (8), pp. 2825-2838. Date of Electronic Publication: 2024 Aug 01.
Publication Type:
Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Institute of Electrical and Electronics Engineers Country of Publication: United States NLM ID: 8310780 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1558-254X (Electronic) Linking ISSN: 02780062 NLM ISO Abbreviation: IEEE Trans Med Imaging Subsets: MEDLINE
Imprint Name(s):
Original Publication: New York, NY : Institute of Electrical and Electronics Engineers, c1982-
References:
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):10346-10357. (PMID: 37021892)
Comput Med Imaging Graph. 2021 Oct;93:101990. (PMID: 34607275)
IEEE Trans Image Process. 2014 Feb;23(2):684-95. (PMID: 26270911)
IEEE Trans Pattern Anal Mach Intell. 2018 Oct;40(10):2498-2512. (PMID: 29028188)
Radiol Artif Intell. 2021 Mar 03;3(3):e200157. (PMID: 34136816)
Sci Rep. 2022 Jul 27;12(1):12867. (PMID: 35896575)
IEEE Trans Med Imaging. 2016 Jan;35(1):174-83. (PMID: 26241970)
Sci Rep. 2020 Feb 28;10(1):3753. (PMID: 32111966)
IEEE Trans Image Process. 2019 Dec;28(12):5881-5896. (PMID: 31226077)
Neural Comput. 2011 Jul;23(7):1661-74. (PMID: 21492012)
IEEE Trans Med Imaging. 2023 Dec;42(12):3524-3539. (PMID: 37379177)
IEEE Trans Image Process. 2020 Sep 11;PP:. (PMID: 32915739)
Med Phys. 2017 Apr;44(4):1408-1419. (PMID: 28192624)
IEEE Trans Image Process. 2022;31:3267-3280. (PMID: 35439133)
IEEE Trans Med Imaging. 2023 Mar;42(3):697-712. (PMID: 36264729)
IEEE Trans Image Process. 2022;31:72-84. (PMID: 34762587)
IEEE Trans Neural Netw Learn Syst. 2023 Sep;34(9):6289-6302. (PMID: 34982698)
Radiology. 2021 May;299(2):313-323. (PMID: 33687284)
IEEE Trans Image Process. 2019 Apr;28(4):1602-1612. (PMID: 30387732)
IEEE Trans Med Imaging. 2024 Mar;43(3):980-993. (PMID: 37851552)
IEEE Trans Image Process. 2019 Oct;28(10):4845-4856. (PMID: 31071042)
Radiol Artif Intell. 2020 Mar 25;2(2):e190027. (PMID: 33937817)
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. (PMID: 29075680)
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2216399120. (PMID: 36802420)
IEEE Trans Med Imaging. 2020 Mar;39(3):777-786. (PMID: 31425023)
Med Phys. 2018 Mar;45(3):1295-1300. (PMID: 29322528)
Comput Med Imaging Graph. 2020 Jan;79:101684. (PMID: 31812132)
Grant Information:
R01 NS102574 United States NS NINDS NIH HHS; 19AIML35170037 United States AHA American Heart Association-American Stroke Association
Entry Date(s):
Date Created: 20240329 Date Completed: 20240801 Latest Revision: 20250802
Update Code:
20250802
PubMed Central ID:
PMC11580158
DOI:
10.1109/TMI.2024.3382043
PMID:
38551825
Database:
MEDLINE

Further Information

Cross-modality data translation has attracted great interest in medical image computing. Deep generative models show performance improvement in addressing related challenges. Nevertheless, as a fundamental challenge in image translation, the problem of zero-shot learning cross-modality image translation with fidelity remains unanswered. To bridge this gap, we propose a novel unsupervised zero-shot learning method called Mutual Information guided Diffusion Model, which learns to translate an unseen source image to the target modality by leveraging the inherent statistical consistency of Mutual Information between different modalities. To overcome the prohibitive high dimensional Mutual Information calculation, we propose a differentiable local-wise mutual information layer for conditioning the iterative denoising process. The Local-wise-Mutual-Information-Layer captures identical cross-modality features in the statistical domain, offering diffusion guidance without relying on direct mappings between the source and target domains. This advantage allows our method to adapt to changing source domains without the need for retraining, making it highly practical when sufficient labeled source domain data is not available. We demonstrate the superior performance of MIDiffusion in zero-shot cross-modality translation tasks through empirical comparisons with other generative models, including adversarial-based and diffusion-based models. Finally, we showcase the real-world application of MIDiffusion in 3D zero-shot learning-based cross-modality image segmentation tasks.