Treffer: Utilizing machine learning to predict post-treatment outcomes in chronic non-specific neck pain patients undergoing cervical extension traction.
J Pain. 2019 Dec;20(12):1394-1415. (PMID: 31063874)
NPJ Digit Med. 2020 Jul 9;3:93. (PMID: 32665978)
Eur Spine J. 2018 Feb;27(Suppl 1):8-15. (PMID: 29332239)
Asian Spine J. 2022 Oct;16(5):776-788. (PMID: 36274246)
Physiother Theory Pract. 2019 Dec;35(12):1328-1335. (PMID: 29856244)
Spine (Phila Pa 1976). 2018 Apr 1;43(7):497-502. (PMID: 28767623)
Curr Rev Musculoskelet Med. 2019 Dec;12(4):562-577. (PMID: 31773477)
Pain Rep. 2023 May 23;8(3):e1076. (PMID: 37731474)
Eur Spine J. 2022 Aug;31(8):2082-2091. (PMID: 35353221)
BMC Musculoskelet Disord. 2023 Jul 31;24(1):620. (PMID: 37525157)
J Clin Med. 2023 Sep 26;12(19):. (PMID: 37834858)
Front Neurol. 2022 Sep 01;13:955367. (PMID: 36119688)
Sci Rep. 2021 Jul 28;11(1):15379. (PMID: 34321539)
Int J Environ Res Public Health. 2019 Jun 19;16(12):. (PMID: 31248064)
Spine J. 2015 Apr 1;15(4):705-12. (PMID: 24021619)
J Clin Med. 2023 Aug 28;12(17):. (PMID: 37685669)
J Clin Med. 2022 Nov 02;11(21):. (PMID: 36362743)
Eur Spine J. 2018 Feb;27(Suppl 1):25-38. (PMID: 29110218)
Gait Posture. 2021 Feb;84:357-367. (PMID: 33465736)
Eur Spine J. 2009 Oct;18(10):1532-40. (PMID: 19399537)
Diagnostics (Basel). 2023 Jul 20;13(14):. (PMID: 37510174)
Musculoskelet Sci Pract. 2018 Feb;33:77-83. (PMID: 29197234)
Br J Sports Med. 2014 Aug;48(16):1216-26. (PMID: 22844035)
Clin Spine Surg. 2016 Feb;29(1):6-16. (PMID: 26710188)
BMC Musculoskelet Disord. 2022 Jan 3;23(1):26. (PMID: 34980079)
Indian J Orthop. 2023 Jan 18;57(3):371-403. (PMID: 36825268)
Spine Deform. 2024 Jan;12(1):3-23. (PMID: 37776420)
J Multidiscip Healthc. 2023 Nov 23;16:3575-3584. (PMID: 38024127)
Man Ther. 2008 May;13(2):148-54. (PMID: 17368075)
Front Surg. 2023 May 03;10:1166734. (PMID: 37206356)
Eur Spine J. 2015 Jan;24(1):3-11. (PMID: 25218732)
Spine J. 2014 Jul 1;14(7):1106-16. (PMID: 24139233)
J Orthop Traumatol. 2017 Mar;18(1):9-16. (PMID: 27738773)
Spine J. 2018 Oct;18(10):1741-1754. (PMID: 29481979)
Spine (Phila Pa 1976). 2004 Nov 15;29(22):2485-92. (PMID: 15543059)
J Phys Ther Sci. 2021 Oct;33(10):784-794. (PMID: 34658525)
J Orthop Sports Phys Ther. 2013 Feb;43(2):31-43. (PMID: 23322093)
Clin J Pain. 2021 Mar 1;37(3):211-218. (PMID: 33399397)
Neurosurgery. 2015 Mar;76 Suppl 1:S14-21; discussion S21. (PMID: 25692364)
Neurosurgery. 2013 Oct;73(4):559-68. (PMID: 23756751)
Weitere Informationen
This study explored the application of machine learning in predicting post-treatment outcomes for chronic neck pain patients undergoing a multimodal program featuring cervical extension traction (CET). Pre-treatment demographic and clinical variables were used to develop predictive models capable of anticipating modifications in cervical lordotic angle (CLA), pain and disability of 570 patients treated between 2014 and 2020. Linear regression models used pre-treatment variables of age, body mass index, CLA, anterior head translation, disability index, pain score, treatment frequency, duration and compliance. These models used the sci-kit-learn machine learning library within Python for implementing linear regression algorithms. The linear regression models demonstrated high precision and accuracy, and effectively explained 30-55% of the variability in post-treatment outcomes, the highest for the CLA. This pioneering study integrates machine learning into spinal rehabilitation. The developed models offer valuable information to customize interventions, set realistic expectations, and optimize treatment strategies based on individual patient characteristics as treated conservatively with rehabilitation programs using CET as part of multimodal care.
(© 2024. The Author(s).)