Treffer: Utilizing machine learning to predict post-treatment outcomes in chronic non-specific neck pain patients undergoing cervical extension traction.

Title:
Utilizing machine learning to predict post-treatment outcomes in chronic non-specific neck pain patients undergoing cervical extension traction.
Authors:
Moustafa IM; Department of Physiotherapy, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.; Neuromusculoskeletal Rehabilitation Research Group, RIMHS-Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.; Faculty of Physical Therapy, Cairo University, Giza, 12613, Egypt., Ozsahin DU; Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah, United Arab Emirates.; Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, 99138, Nicosia, Turkey.; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates., Mustapha MT; Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, 99138, Nicosia, Turkey.; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.; Department of Biomedical Engineering, Near East University, Nicosia, Mersin 10, Turkey., Ahbouch A; Department of Physiotherapy, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.; Neuromusculoskeletal Rehabilitation Research Group, RIMHS-Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates., Oakley PA; CBP Nonprofit (a Spine Research Foundation), Eagle, ID, 83616, USA.; Private Practice, Newmarket, ON, L3Y 8Y8, Canada.; Kinesiology and Health Science, York University, Toronto, ON, M3J 1P3, Canada., Harrison DE; CBP Nonprofit (a Spine Research Foundation), Eagle, ID, 83616, USA. drdeedharrison@gmail.com.
Source:
Scientific reports [Sci Rep] 2024 May 23; Vol. 14 (1), pp. 11781. Date of Electronic Publication: 2024 May 23.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
J Inflamm Res. 2022 Sep 09;15:5201-5233. (PMID: 36110505)
J Pain. 2019 Dec;20(12):1394-1415. (PMID: 31063874)
NPJ Digit Med. 2020 Jul 9;3:93. (PMID: 32665978)
Eur Spine J. 2018 Feb;27(Suppl 1):8-15. (PMID: 29332239)
Asian Spine J. 2022 Oct;16(5):776-788. (PMID: 36274246)
Physiother Theory Pract. 2019 Dec;35(12):1328-1335. (PMID: 29856244)
Spine (Phila Pa 1976). 2018 Apr 1;43(7):497-502. (PMID: 28767623)
Curr Rev Musculoskelet Med. 2019 Dec;12(4):562-577. (PMID: 31773477)
Pain Rep. 2023 May 23;8(3):e1076. (PMID: 37731474)
Eur Spine J. 2022 Aug;31(8):2082-2091. (PMID: 35353221)
BMC Musculoskelet Disord. 2023 Jul 31;24(1):620. (PMID: 37525157)
J Clin Med. 2023 Sep 26;12(19):. (PMID: 37834858)
Front Neurol. 2022 Sep 01;13:955367. (PMID: 36119688)
Sci Rep. 2021 Jul 28;11(1):15379. (PMID: 34321539)
Int J Environ Res Public Health. 2019 Jun 19;16(12):. (PMID: 31248064)
Spine J. 2015 Apr 1;15(4):705-12. (PMID: 24021619)
J Clin Med. 2023 Aug 28;12(17):. (PMID: 37685669)
J Clin Med. 2022 Nov 02;11(21):. (PMID: 36362743)
Eur Spine J. 2018 Feb;27(Suppl 1):25-38. (PMID: 29110218)
Gait Posture. 2021 Feb;84:357-367. (PMID: 33465736)
Eur Spine J. 2009 Oct;18(10):1532-40. (PMID: 19399537)
Diagnostics (Basel). 2023 Jul 20;13(14):. (PMID: 37510174)
Musculoskelet Sci Pract. 2018 Feb;33:77-83. (PMID: 29197234)
Br J Sports Med. 2014 Aug;48(16):1216-26. (PMID: 22844035)
Clin Spine Surg. 2016 Feb;29(1):6-16. (PMID: 26710188)
BMC Musculoskelet Disord. 2022 Jan 3;23(1):26. (PMID: 34980079)
Indian J Orthop. 2023 Jan 18;57(3):371-403. (PMID: 36825268)
Spine Deform. 2024 Jan;12(1):3-23. (PMID: 37776420)
J Multidiscip Healthc. 2023 Nov 23;16:3575-3584. (PMID: 38024127)
Man Ther. 2008 May;13(2):148-54. (PMID: 17368075)
Front Surg. 2023 May 03;10:1166734. (PMID: 37206356)
Eur Spine J. 2015 Jan;24(1):3-11. (PMID: 25218732)
Spine J. 2014 Jul 1;14(7):1106-16. (PMID: 24139233)
J Orthop Traumatol. 2017 Mar;18(1):9-16. (PMID: 27738773)
Spine J. 2018 Oct;18(10):1741-1754. (PMID: 29481979)
Spine (Phila Pa 1976). 2004 Nov 15;29(22):2485-92. (PMID: 15543059)
J Phys Ther Sci. 2021 Oct;33(10):784-794. (PMID: 34658525)
J Orthop Sports Phys Ther. 2013 Feb;43(2):31-43. (PMID: 23322093)
Clin J Pain. 2021 Mar 1;37(3):211-218. (PMID: 33399397)
Neurosurgery. 2015 Mar;76 Suppl 1:S14-21; discussion S21. (PMID: 25692364)
Neurosurgery. 2013 Oct;73(4):559-68. (PMID: 23756751)
Contributed Indexing:
Keywords: Cervical spine; Disability; Lordosis; Machine learning; Neck pain; Prediction; Traction
Entry Date(s):
Date Created: 20240523 Date Completed: 20240523 Latest Revision: 20240526
Update Code:
20250114
PubMed Central ID:
PMC11116459
DOI:
10.1038/s41598-024-62812-7
PMID:
38783089
Database:
MEDLINE

Weitere Informationen

This study explored the application of machine learning in predicting post-treatment outcomes for chronic neck pain patients undergoing a multimodal program featuring cervical extension traction (CET). Pre-treatment demographic and clinical variables were used to develop predictive models capable of anticipating modifications in cervical lordotic angle (CLA), pain and disability of 570 patients treated between 2014 and 2020. Linear regression models used pre-treatment variables of age, body mass index, CLA, anterior head translation, disability index, pain score, treatment frequency, duration and compliance. These models used the sci-kit-learn machine learning library within Python for implementing linear regression algorithms. The linear regression models demonstrated high precision and accuracy, and effectively explained 30-55% of the variability in post-treatment outcomes, the highest for the CLA. This pioneering study integrates machine learning into spinal rehabilitation. The developed models offer valuable information to customize interventions, set realistic expectations, and optimize treatment strategies based on individual patient characteristics as treated conservatively with rehabilitation programs using CET as part of multimodal care.
(© 2024. The Author(s).)