Result: Deep learning approach to femoral AVN detection in digital radiography: differentiating patients and pre-collapse stages.

Title:
Deep learning approach to femoral AVN detection in digital radiography: differentiating patients and pre-collapse stages.
Authors:
Rakhshankhah N; Department of Radiology and Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran., Abbaszadeh M; Department of Orthopedic Surgery, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran., Kazemi A; Department of Radiology and Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran., Rezaei SS; Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran., Roozpeykar S; Department of Radiology and Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. Roozbeh.s.62@gmail.com., Arabfard M; Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. arabfard@gmail.com.
Source:
BMC musculoskeletal disorders [BMC Musculoskelet Disord] 2024 Jul 16; Vol. 25 (1), pp. 547. Date of Electronic Publication: 2024 Jul 16.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: BioMed Central Country of Publication: England NLM ID: 100968565 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2474 (Electronic) Linking ISSN: 14712474 NLM ISO Abbreviation: BMC Musculoskelet Disord Subsets: MEDLINE
Imprint Name(s):
Original Publication: London : BioMed Central, [2000-
References:
World J Orthop. 2015 Sep 18;6(8):590-601. (PMID: 26396935)
Clin Orthop Relat Res. 2012 Sep;470(9):2636-9. (PMID: 22760600)
Sci Rep. 2023 Sep 6;13(1):14692. (PMID: 37673920)
J Am Coll Radiol. 2004 Feb;1(2):127-32. (PMID: 17411540)
N Engl J Med. 1992 May 28;326(22):1473-9. (PMID: 1574093)
Clin Cases Miner Bone Metab. 2015 Jan-Apr;12(Suppl 1):31-8. (PMID: 27134630)
Skeletal Radiol. 2019 Feb;48(2):239-244. (PMID: 29955910)
Bone Jt Open. 2022 Nov;3(11):877-884. (PMID: 36373773)
Heliyon. 2022 Oct 27;8(11):e11266. (PMID: 36339768)
Expert Opin Med Diagn. 2013 Mar;7(2):179-87. (PMID: 23530887)
BMC Bioinformatics. 2011 Mar 17;12:77. (PMID: 21414208)
Orthopedics. 2017 Jan 1;40(1):e117-e123. (PMID: 27755641)
Diagnostics (Basel). 2021 Sep 15;11(9):. (PMID: 34574027)
Biomedicines. 2023 Nov 20;11(11):. (PMID: 38002100)
Clin Radiol. 2001 Dec;56(12):938-46. (PMID: 11795921)
Front Bioeng Biotechnol. 2022 Sep 06;10:927926. (PMID: 36147533)
J Imaging Inform Med. 2024 Apr;37(2):706-714. (PMID: 38343256)
Acta Radiol. 2019 Aug;60(8):969-976. (PMID: 30326729)
Z Orthop Ihre Grenzgeb. 2001 Mar-Apr;139(2):163-7. (PMID: 11386108)
Am J Orthop (Belle Mead NJ). 2004 Jul;33(7):327-32. (PMID: 15344574)
IEEE J Biomed Health Inform. 2021 Jun;25(6):2093-2102. (PMID: 33170788)
Nature. 2015 May 28;521(7553):436-44. (PMID: 26017442)
J Orthop Translat. 2020 Jan 06;21:100-110. (PMID: 32309135)
Clin Orthop Relat Res. 2002 Jul;(400):149-57. (PMID: 12072757)
J Bone Joint Surg Am. 2008 Mar;90(3):477-84. (PMID: 18310696)
Dentomaxillofac Radiol. 2020 Jul;49(5):20190441. (PMID: 32105499)
J Bone Joint Surg Am. 2004 Dec;86(12):2589-93. (PMID: 15590840)
J Digit Imaging. 2022 Dec;35(6):1494-1505. (PMID: 35794502)
Radiol Artif Intell. 2022 May 04;4(3):e210206. (PMID: 35652119)
Clin Orthop Relat Res. 1994 Oct;(307):124-9. (PMID: 7924024)
Int J Environ Res Public Health. 2022 Jun 15;19(12):. (PMID: 35742595)
J Pers Med. 2021 Jun 07;11(6):. (PMID: 34200151)
Orthop Clin North Am. 2004 Jul;35(3):xiii-xv. (PMID: 15271550)
Health Sci Rep. 2023 Mar 13;6(3):e1102. (PMID: 36923371)
Am J Phys Anthropol. 2013 Jan;150(1):68-75. (PMID: 23283666)
Eur Radiol. 2024 Feb;34(2):1179-1186. (PMID: 37581656)
AJR Am J Roentgenol. 2000 Jul;175(1):17-22. (PMID: 10882240)
Contributed Indexing:
Keywords: AVN detection; Artificial intelligence; Deep learning; Digital radiography; Osteonecrosis of the femoral head
Entry Date(s):
Date Created: 20240715 Date Completed: 20240715 Latest Revision: 20240718
Update Code:
20250114
PubMed Central ID:
PMC11251364
DOI:
10.1186/s12891-024-07669-7
PMID:
39010001
Database:
MEDLINE

Further Information

Objective: This study aimed to evaluate a new deep-learning model for diagnosing avascular necrosis of the femoral head (AVNFH) by analyzing pelvic anteroposterior digital radiography.
Methods: The study sample included 1167 hips. The radiographs were independently classified into 6 stages by a radiologist using their simultaneous MRIs. After that, the radiographs were given to train and test the deep learning models of the project including SVM and ANFIS layer using the Python programming language and TensorFlow library. In the last step, the test set of hip radiographs was provided to two independent radiologists with different work experiences to compare their diagnosis performance to the deep learning models' performance using the F1 score and Mcnemar test analysis.
Results: The performance of SVM for AVNFH detection (AUC = 82.88%) was slightly higher than less experienced radiologists (79.68%) and slightly lower than experienced radiologists (88.4%) without reaching significance (p-value > 0.05). Evaluation of the performance of SVM for pre-collapse AVNFH detection with an AUC of 73.58% showed significantly higher performance than less experienced radiologists (AUC = 60.70%, p-value < 0.001). On the other hand, no significant difference is noted between experienced radiologists and SVM for pre-collapse detection. ANFIS algorithm for AVNFH detection with an AUC of 86.60% showed significantly higher performance than less experienced radiologists (AUC = 79.68%, p-value = 0.04). Although reaching less performance compared to experienced radiologists statistically not significant (AUC = 88.40%, p-value = 0.20).
Conclusions: Our study has shed light on the remarkable capabilities of SVM and ANFIS as diagnostic tools for AVNFH detection in radiography. Their ability to achieve high accuracy with remarkable efficiency makes them promising candidates for early detection and intervention, ultimately contributing to improved patient outcomes.
(© 2024. The Author(s).)