Treffer: Invited commentary: deep learning-methods to amplify epidemiologic data collection and analyses.
Original Publication: Baltimore, School of Hygiene and Public Health of Johns Hopkins Univ.
Int J Epidemiol. 2021 Jan 23;49(6):2058-2064. (PMID: 31298274)
Adv Nutr. 2021 Jun 1;12(3):621-631. (PMID: 33606879)
J Biomed Inform. 2023 Jan;137:104274. (PMID: 36539106)
BMC Med Inform Decis Mak. 2021 Mar 9;21(1):92. (PMID: 33750385)
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13108-13113. (PMID: 29183967)
JMIR Med Inform. 2020 Jul 30;8(7):e17784. (PMID: 32729840)
Gigascience. 2019 Nov 1;8(11):. (PMID: 31730697)
Brief Bioinform. 2018 Nov 27;19(6):1236-1246. (PMID: 28481991)
Am J Prev Med. 2020 Jan;58(1):152-160. (PMID: 31862100)
JAMA Dermatol. 2019 Oct 01;155(10):1135-1141. (PMID: 31411641)
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5027-5038. (PMID: 35737602)
PLoS One. 2019 Mar 27;14(3):e0214365. (PMID: 30917171)
JAMA. 2020 Nov 17;324(19):1957-1969. (PMID: 33201204)
JAMA. 2018 Sep 18;320(11):1101-1102. (PMID: 30178065)
JAMA. 2018 Sep 18;320(11):1192-1193. (PMID: 30422287)
Nutr Diabetes. 2022 May 27;12(1):27. (PMID: 35624098)
JMIR Form Res. 2020 May 5;4(5):e14064. (PMID: 32369025)
Comput Methods Programs Biomed. 2021 Nov;211:106433. (PMID: 34614452)
PLoS Comput Biol. 2018 Apr 26;14(4):e1006106. (PMID: 29698408)
J Epidemiol Community Health. 2018 Mar;72(3):260-266. (PMID: 29335255)
Lancet Digit Health. 2019 Oct;1(6):e271-e297. (PMID: 33323251)
Sci Rep. 2022 Jan 27;12(1):1534. (PMID: 35087165)
Environ Health Perspect. 2014 Oct;122(10):A268-75. (PMID: 25272250)
Am J Epidemiol. 2023 Nov 3;192(11):1904-1916. (PMID: 37139570)
J Am Med Inform Assoc. 2020 Mar 1;27(3):457-470. (PMID: 31794016)
JAMA. 2017 Dec 12;318(22):2199-2210. (PMID: 29234806)
Epidemiology. 2023 Mar 1;34(2):206-215. (PMID: 36722803)
G3 (Bethesda). 2020 Nov 5;10(11):4177-4190. (PMID: 32934019)
JAMA Intern Med. 2019 Mar 1;179(3):293-294. (PMID: 30556825)
Nat Protoc. 2021 Jun;16(6):2765-2787. (PMID: 33953393)
Nat Commun. 2020 Aug 13;11(1):4054. (PMID: 32792511)
Plant Genome. 2021 Nov;14(3):e20118. (PMID: 34323393)
BMC Public Health. 2020 Feb 12;20(1):215. (PMID: 32050938)
Nat Med. 2019 Jan;25(1):24-29. (PMID: 30617335)
NEJM Evid. 2022 May;1(5):. (PMID: 36875289)
JAMA Netw Open. 2018 Aug 3;1(4):e181535. (PMID: 30646134)
JAMA. 2018 Sep 18;320(11):1107-1108. (PMID: 30178025)
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7571-7576. (PMID: 28684401)
NPJ Digit Med. 2018 May 8;1:18. (PMID: 31304302)
JAMA Netw Open. 2020 Sep 1;3(9):e2017135. (PMID: 32970157)
Int J Epidemiol. 2021 Jan 23;49(6):1770-1773. (PMID: 33485274)
Weitere Informationen
Deep learning is a subfield of artificial intelligence and machine learning, based mostly on neural networks and often combined with attention algorithms, that has been used to detect and identify objects in text, audio, images, and video. Serghiou and Rough (Am J Epidemiol. 2023;192(11):1904-1916) presented a primer for epidemiologists on deep learning models. These models provide substantial opportunities for epidemiologists to expand and amplify their research in both data collection and analyses by increasing the geographic reach of studies, including more research subjects, and working with large or high-dimensional data. The tools for implementing deep learning methods are not as straightforward or ubiquitous for epidemiologists as traditional regression methods found in standard statistical software, but there are exciting opportunities for interdisciplinary collaboration with deep learning experts, just as epidemiologists have with statisticians, health care providers, urban planners, and other professionals. Despite the novelty of these methods, epidemiologic principles of assessing bias, study design, interpretation, and others still apply when implementing deep learning methods or assessing the findings of studies that have used them.
(© The Author(s) 2024. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)