Treffer: scDAPP: a comprehensive single-cell transcriptomics analysis pipeline optimized for cross-group comparison.
Innovation (Camb). 2021 Jul 01;2(3):100141. (PMID: 34557778)
Gigascience. 2022 Dec 28;12:. (PMID: 37889009)
Nat Genet. 2000 May;25(1):25-9. (PMID: 10802651)
Bioinformatics. 2023 Nov 1;39(11):. (PMID: 37935424)
Nat Commun. 2023 Mar 21;14(1):1551. (PMID: 36941249)
Nat Commun. 2019 Oct 11;10(1):4667. (PMID: 31604912)
Cell Syst. 2019 Apr 24;8(4):329-337.e4. (PMID: 30954475)
Nat Genet. 2001 Mar;27(3):286-91. (PMID: 11242110)
Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
Gigascience. 2020 Oct 20;9(10):. (PMID: 33079170)
Bioinformatics. 2022 Oct 14;38(20):4720-4726. (PMID: 36005887)
Nat Biotechnol. 2021 Jul;39(7):877-884. (PMID: 33767393)
Nature. 2001 Mar 1;410(6824):97-101. (PMID: 11242049)
Front Bioinform. 2022 May 23;2:793309. (PMID: 36304292)
Nucleic Acids Res. 2021 Jan 8;49(D1):D104-D111. (PMID: 33231677)
Genome Biol. 2019 Dec 23;20(1):296. (PMID: 31870423)
Nat Biotechnol. 2018 Jun;36(5):411-420. (PMID: 29608179)
Bioinform Adv. 2023 Jul 06;3(1):vbad089. (PMID: 37465398)
Cell Syst. 2015 Dec 23;1(6):417-425. (PMID: 26771021)
Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
Nat Methods. 2019 Jul;16(7):619-626. (PMID: 31209384)
Bioinformatics. 2021 Oct 11;37(19):3374-3376. (PMID: 33774659)
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. (PMID: 16199517)
Nat Rev Genet. 2023 Aug;24(8):550-572. (PMID: 37002403)
Nat Rev Genet. 2023 Aug;24(8):494-515. (PMID: 36864178)
Genome Biol. 2018 Dec 19;19(1):224. (PMID: 30567574)
Cell. 2001 Feb 23;104(4):619-29. (PMID: 11239417)
Nat Commun. 2021 Sep 28;12(1):5692. (PMID: 34584091)
Cell. 2022 Mar 3;185(5):916-938.e58. (PMID: 35216673)
Nature. 2005 Mar 17;434(7031):338-45. (PMID: 15735639)
Weitere Informationen
Single-cell transcriptomics profiling has increasingly been used to evaluate cross-group (or condition) differences in cell population and cell-type gene expression. This often leads to large datasets with complex experimental designs that need advanced comparative analysis. Concurrently, bioinformatics software and analytic approaches also become more diverse and constantly undergo improvement. Thus, there is an increased need for automated and standardized data processing and analysis pipelines, which should be efficient and flexible too. To address these, we develop the s ingle- c ell D ifferential A nalysis and P rocessing P ipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or nucleus) transcriptomic data between two or more groups and at the levels of single cells or 'pseudobulking' samples. The pipeline automates many steps of pre-processing using data-learnt parameters, uses previously benchmarked software, and generates comprehensive intermediate data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by extensive data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly from raw data to biological interpretation. scDAPP is freely available under the MIT license, with source code, documentation and sample data at the GitHub (https://github.com/bioinfoDZ/scDAPP).
(© The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.)