Treffer: Construction and validation of a machine learning-based immune-related prognostic model for glioma.
Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220. https://doi.org/10.1186/s13059-017-1349-1. (PMID: 10.1186/s13059-017-1349-1291416605688663)
Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J et al (2018) ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data 5:180015. https://doi.org/10.1038/sdata.2018.15. (PMID: 10.1038/sdata.2018.15294856225827693)
Booth TC, Williams M, Luis A, Cardoso J, Ashkan K, Shuaib H (2020) Machine learning and glioma imaging biomarkers. Clin Radiol 75(1):20–32. https://doi.org/10.1016/j.crad.2019.07.001 Epub 2019 Jul 29. (PMID: 10.1016/j.crad.2019.07.00131371027)
Chen R, Smith-Cohn M, Cohen AL, Colman H (2017) Glioma subclassifications and their clinical significance. Neurotherapeutics 14(2):284–297. https://doi.org/10.1007/s13311-017-0519-x. (PMID: 10.1007/s13311-017-0519-x282811735398991)
Davis ME (2018) Epidemiology and overview of Gliomas. Semin Oncol Nurs 34(5):420–429. https://doi.org/10.1016/j.soncn.2018.10.001 Epub 2018 Nov 2. (PMID: 10.1016/j.soncn.2018.10.00130392758)
Faridah IS, Yusmazura Z, Muhammad LM, Nik DN, Tan SC (2024) SF1: a standardised fraction of Clinacanthus nutans that inhibits the Stemness properties of Cancer Stem-Like cells derived from Cervical Cancer. Sains Malaysiana 53(3):667–679. https://doi.org/10.17576/jsm-2024-5303-14. (PMID: 10.17576/jsm-2024-5303-14)
Gao X, Leone GW, Wang H (2020) Cyclin D-CDK4/6 functions in cancer. Adv Cancer Res 148:147–169. https://doi.org/10.1016/bs.acr.2020.02.002. (PMID: 10.1016/bs.acr.2020.02.00232723562)
Garcia-Fabiani MB, Ventosa M, Comba A, Candolfi M, Nicola Candia AJ, Alghamri MS et al (2020) Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opin Investig Drugs 29(7):659–684 Epub 2020 Jun 4. (PMID: 10.1080/13543784.2020.176852832400216)
Gillard AG, Shin DH, Hampton LA, Lopez-Rivas A, Parthasarathy A, Fueyo J et al (2024) Targeting innate immunity in Glioma Therapy. Int J Mol Sci. https://doi.org/10.3390/ijms25020947. (PMID: 10.3390/ijms250209473825602110815900)
Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB et al (2020) CDK4/6 inhibition suppresses tumour growth and enhances the effect of temozolomide in glioma cells. J Cell Mol Med 24(9):5135–5145. https://doi.org/10.1038/nature23465. (PMID: 10.1038/nature23465)
Goel S, Bergholz JS, Zhao JJ (2022) Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer 22(6):356–372. https://doi.org/10.1038/s41568-022-00456-3. (PMID: 10.1038/s41568-022-00456-3353046049149100)
Gong L, Ji L, Xu D, Wang J, Zou J (2021) TGF-β links glycolysis and immunosuppression in glioblastoma. Histol Histopathol 36(11):1111–1124. https://doi.org/10.14670/HH-18-366. (PMID: 10.14670/HH-18-36634323284)
Han Y, Wang Y, Dong X, Sun D, Liu Z, Yue J et al (2023) TISCH2: expanded datasets and new tools for single-cell transcriptome analyses of the tumor microenvironment. Nucleic Acids Res 51(D1):D1425–d1431. https://doi.org/10.1093/nar/gkac959. (PMID: 10.1093/nar/gkac95936321662)
Heinz A (2020) Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol 55(3):252–273. https://doi.org/10.1080/10409238.2020.1768208. (PMID: 10.1080/10409238.2020.176820832530323)
Hoeman C, Shen C, Becher OJ (2018) CDK4/6 and PDGFRA signaling as therapeutic targets in diffuse intrinsic pontine glioma. Front Oncol 8:191. https://doi.org/10.3389/fonc.2018.00191. (PMID: 10.3389/fonc.2018.00191299046235990603)
Hongyu G, Heng Z, Junchao C, Jueheng W, Jie Y, Jun L et al (2011) IKBKE is over-expressed in glioma and contributes to resistance of glioma cells to apoptosis via activating NF-κB. J Pathol 223(3):436–445. https://doi.org/10.1002/path.2815. (PMID: 10.1002/path.2815)
Jia-Hua H, Juan W, Yuan-Zhong Y, Qun-Xi C, Li-Ling L, Lu S et al (2021) SSTR2 is a prognostic factor and a promising therapeutic target in glioma. Am J Transl Res 13(10):11223–11234.
Jin S, Shigang L, Miaojing W, Xianggan W, Yan D, Yansheng L et al (2020) HOTAIR-EZH2 inhibitor AC1Q3QWB upregulates CWF19L1 and enhances cell cycle inhibition of CDK4/6 inhibitor palbociclib in glioma. Clin Transl Med 10(1):182–198. https://doi.org/10.1002/ctm2.21. (PMID: 10.1002/ctm2.21)
Jung S, Rutka JT, Hinek A (1998) Tropoelastin and elastin degradation products promote proliferation of human astrocytoma cell lines. J Neuropathol Exp Neurol 57(5):439–448. (PMID: 10.1097/00005072-199805000-000079596414)
Jung S, Hinek A, Tsugu A, Hubbard SL, Ackerley C, Becker LE et al (1999) Astrocytoma cell interaction with elastin substrates: implications for astrocytoma invasive potential. Glia 25(2):179–189. https://doi.org/10.1002/(sici)1098-1136(19990115)25. (PMID: 10.1002/(sici)1098-1136(19990115)259890632)
Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B et al (2021) A single-cell type transcriptomics map of human tissues. Sci Adv. https://doi.org/10.1126/sciadv.abh2169. (PMID: 10.1126/sciadv.abh2169349364528694624)
Kazunori T, Masao Y, Daisuke A, Junya S, Hiroyuki O, Takashi S et al (2020) Lymphovascular invasion in early gastric cancer: impact of ancillary D2-40 and elastin staining on interobserver agreement. Histopathology 76(6):888–897. https://doi.org/10.1111/his.14075. (PMID: 10.1111/his.14075)
Kocher M, Ruge MI, Galldiks N, Lohmann P (2020) Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlenther Onkol 196(10):856–867. https://doi.org/10.1007/s00066-020-01626-8 Epub 2020 May 11. (PMID: 10.1007/s00066-020-01626-8323941007498494)
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77(21):e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307. (PMID: 10.1158/0008-5472.CAN-17-0307290929526042652)
Li G, Li L, Li Y, Qian Z, Wu F, He Y et al (2022) An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain 145(3):1151–1161. https://doi.org/10.1093/brain/awab340. (PMID: 10.1093/brain/awab340351369349050568)
Lin CJ, Cocciolone AJ, Wagenseil JE (2022) Elastin, arterial mechanics, and stenosis. Am J Physiol Cell Physiol 322(5):C875–c886. https://doi.org/10.1152/ajpcell.00448.2021. (PMID: 10.1152/ajpcell.00448.2021351961689037699)
Lin C, Wang N, Xu C (2023) Glioma-associated microglia/macrophages (GAMs) in glioblastoma: immune function in the tumor microenvironment and implications for immunotherapy. Front Immunol 14:p1123853. https://doi.org/10.3389/fimmu.2023.1123853 . (eCollection 2023). (PMID: 10.3389/fimmu.2023.1123853)
Ling L, Meixiong C, Tian Z, Yong C, Yaqiu W, Qi W et al (2022) Mesenchymal stem cell-derived extracellular vesicles prevent glioma by blocking M2 polarization of macrophages through a miR-744-5p/TGFB1-dependent mechanism. Cell Biol Toxicol 38(4):649–665. https://doi.org/10.1007/s10565-021-09652-7. (PMID: 10.1007/s10565-021-09652-7)
Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H et al (2022a) Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat Commun 13(1):816. (PMID: 10.1038/s41467-022-28421-6351450988831564)
Liu Y, Guo G, Lu Y, Chen X, Zhu L, Zhao L et al (2022b) Silencing IKBKE inhibits the migration and invasion of glioblastoma by promoting Snail1 degradation. Clin Transl Oncol 24(5):816–828. https://doi.org/10.1007/s12094-021-02726-2. (PMID: 10.1007/s12094-021-02726-234741724)
Liu CJ, Hu FF, Xie GY, Miao YR, Li XW, Zeng Y et al (2023) GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief Bioinform. https://doi.org/10.1093/bib/bbac558. (PMID: 10.1093/bib/bbac5583824369210753293)
Luo J, Pan M, Mo K, Mao Y, Zou D (2023) Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol 91:110–123 Epub 2023 Mar 11. (PMID: 10.1016/j.semcancer.2023.03.00636907387)
Majumder A, Sen D (2021) Artificial intelligence in cancer diagnostics and therapy: current perspectives. Indian J Cancer 58(4):481–492. https://doi.org/10.4103/ijc.IJC_399_20. (PMID: 10.4103/ijc.IJC_399_2034975094)
Manami H, Kazuya F, Takashi I, Hemragul S, Tetsuhiro H, Kazuya T et al (2022) SMURF2 phosphorylation at Thr249 modifies glioma stemness and tumorigenicity by regulating TGF-β receptor stability. Commun Biol 5(1):22. https://doi.org/10.1038/s42003-021-02950-0. (PMID: 10.1038/s42003-021-02950-0)
Masaki U, Akiyo T, Yuki K, Tatsunori S, Akiko M, Kotaro U et al (2024) Immunohistochemical profiling of SSTR2 and HIF-2α with the tumor microenvironment in pheochromocytoma and paraganglioma. Cancers (Basel). https://doi.org/10.3390/cancers16122191. (PMID: 10.3390/cancers1612219139061174)
Masayoshi F, Masako O, Hiroyoshi D, Ye-Min T, Hnin W, Teizo Y et al (2020) Elastin and collagen IV double staining: a refined method to detect blood vessel invasion in breast cancer. Pathol Int 70(9):612–623. https://doi.org/10.1111/pin.12971. (PMID: 10.1111/pin.12971)
Moody TW, Berna MJ, Mantey S, Sancho V, Ridnour L, Wink DA et al (2010) Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells. Eur J Pharmacol 637(1–3):38–45. https://doi.org/10.1016/j.ejphar.2010.03.057. (PMID: 10.1016/j.ejphar.2010.03.057203885073921891)
Moore-Smith L, Pasche B (2011) TGFBR1 signaling and breast cancer. J Mammary Gland Biol Neoplasia 16(2):89–95. https://doi.org/10.1007/s10911-011-9216-2. (PMID: 10.1007/s10911-011-9216-2214619944753062)
Nasrallah MP, Zhao J, Tsai CC, Meredith D, Marostica E, Ligon KL et al (2020) Machine learning for cryosection pathology predicts the 2021 WHO classification of glioma. Medicine 4(8):526-540e4 (Epub 2023 Jul 7). (PMID: 10.1016/j.medj.2023.06.002)
Ohki-Hamazaki H (2000) Neuromedin B. Prog Neurobiol 62(3):297–312. https://doi.org/10.1016/s0301-0082(00)00004-6. (PMID: 10.1016/s0301-0082(00)00004-610840151)
Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) CBTRUS statistical report: primary brain and other Central Nervous System tumors diagnosed in the United States in 2013–2017. Neuro Oncol 22(12 Suppl 2):iv1–iv96. https://doi.org/10.1093/neuonc/noaa200. (PMID: 10.1093/neuonc/noaa200331237327596247)
Peng D, Fu M, Wang M, Wei Y, Wei X (2022) Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer 21(1):104. https://doi.org/10.1186/s12943-022-01569-x. (PMID: 10.1186/s12943-022-01569-x354612539033932)
Phoebe SP, Carol HY, Chai -LK, Yeun MC (2024) A New Oxoaporphine and Liriodenine’s Anti-neuroblastoma potential from the roots of Polyalthia bullata King. Sains Malaysiana 53(2):359–367. https://doi.org/10.17576/jsm-2024-5302-10. (PMID: 10.17576/jsm-2024-5302-10)
Qin H, Abulaiti A, Maimaiti A, Abulaiti Z, Fan G, Aili Y et al (2023) Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J Transl Med 21(1):588. https://doi.org/10.1186/s12967-023-04468-x. (PMID: 10.1186/s12967-023-04468-x3766006010474752)
Reza A, Cahyo B, Zaenal A, Kazuhito FJ, Irmia IA (2024) Evaluating the cytotoxic activity of Lactobacillus plantarum IIA-1A5 against MCF-7 human breast Cancer cells and identifying its Surface layer protein gene. Sains Malaysiana 53(4):881–892. https://doi.org/10.17576/jsm-2024-5304-12. (PMID: 10.17576/jsm-2024-5304-12)
Si Y, Kim S, Ou J, Lu Y, Ernst P, Chen K et al (2021) Anti-SSTR2 antibody-drug conjugate for neuroendocrine tumor therapy. Cancer Gene Ther 28:7–8. https://doi.org/10.1038/s41417-020-0196-5. (PMID: 10.1038/s41417-020-0196-5)
Siegfried JM, Krishnamachary N, Gaither Davis A, Gubish C, Hunt JD, Shriver SP (1999) Evidence for autocrine actions of neuromedin B and gastrin-releasing peptide in non-small cell lung cancer. Pulm Pharmacol Ther 12(5):291–302. https://doi.org/10.1006/pupt.1999.0210. (PMID: 10.1006/pupt.1999.021010545285)
Suqin L, Shihuan L, Qingjie L, Fei L, Wenli L, Liangzhu Y et al (2023) Increased Neuromedin B is associated with a favorable prognosis in Glioblastoma. Front Biosci (Landmark Ed) 28(3):54. https://doi.org/10.31083/j.fbl2803054. (PMID: 10.31083/j.fbl2803054)
Tomczak K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 19(1a):A68–77. https://doi.org/10.5114/wo.2014.47136. (PMID: 10.5114/wo.2014.4713625691825)
Wang LM, Englander ZK, Miller ML, Bruce JN (2023) Malignant glioma. Adv Exp Med Biol 1405:1–30. https://doi.org/10.1007/978-3-031-23705-8_1. (PMID: 10.1007/978-3-031-23705-8_137452933)
Weizhong Z, Zhiyuan Y, Feng Z, Qinggui H, Hongbo X (2023) TGF-β score based on silico analysis can robustly predict prognosis and immunological characteristics in lower-grade glioma: the evidence from multicenter studies. Recent Pat Anticancer Drug Discov. https://doi.org/10.2174/1574892819666230915143632. (PMID: 10.2174/1574892819666230915143632)
Xiang T, Shuyao W, Changyun G, Min Q, Xinli Z, Peng W et al (2018) SSTR2 associated with neuronal apoptosis after intracerebral hemorrhage in adult rats. Neurol Res 40(3):221–230. https://doi.org/10.1080/01616412.2018.1428277. (PMID: 10.1080/01616412.2018.1428277)
Xin Wang J, Lu J, Li Y, Liu G, Guo Q, Huang (2021) CYT387, a potent IKBKE inhibitor, suppresses human glioblastoma progression by activating the Hippo pathway. J Transl Med 19(1):396. https://doi.org/10.1186/s12967-021-03070-3. (PMID: 10.1186/s12967-021-03070-334544426)
Yin M, Wang X, Lu J (2020) Advances in IKBKE as a potential target for cancer therapy. Cancer Med 9(1):247–258. https://doi.org/10.1002/cam4.2678. (PMID: 10.1002/cam4.267831733040)
Yu MW, Quail DF (2021) Immunotherapy for Glioblastoma: current progress and challenges. Front Immunol 12:676301. https://doi.org/10.3389/fimmu.2021.676301 . (eCollection 2021). (PMID: 10.3389/fimmu.2021.676301340548678158294)
Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y et al (2021) Chinese Glioma Genome Atlas (CGGA): a comprehensive resource with functional genomic data from Chinese glioma patients. Genomics Proteom Bioinf 19(1):1–12. https://doi.org/10.1016/j.gpb.2020.10.005. (PMID: 10.1016/j.gpb.2020.10.005)
Weitere Informationen
Background: Glioma stands as the most prevalent primary brain tumor found within the central nervous system, characterized by high invasiveness and treatment resistance. Although immunotherapy has shown potential in various tumors, it still faces challenges in gliomas. This study seeks to develop and validate a prognostic model for glioma based on immune-related genes, to provide new tools for precision medicine.
Methods: Glioma samples were obtained from a database that includes the ImmPort database. Additionally, we incorporated ten machine learning algorithms to assess the model's performance using evaluation metrics like the Harrell concordance index (C-index). The model genes were further studied using GSCA, TISCH2, and HPA databases to understand their role in glioma pathology at the genomic, molecular, and single-cell levels, and validate the biological function of IKBKE in vitro experiments.
Results: In this study, a total of 199 genes associated with prognosis were identified using univariate Cox analysis. Subsequently, a consensus prognostic model was developed through the application of machine learning algorithms. In which the Lasso + plsRcox algorithm demonstrated the best predictive performance. The model showed a good ability to distinguish two groups in both the training and test sets. Additionally, the model genes were closely related to immunity (oligodendrocytes and macrophages), and mutation burden. The results of in vitro experiments showed that the expression level of the IKBKE gene had a significant effect on the apoptosis and migration of GL261 glioma cells. Western blot analysis showed that down-regulation of IKBKE resulted in increased expression of pro-apoptotic protein Bax and decreased expression of anti-apoptotic protein Bcl-2, which was consistent with increased apoptosis rate. On the contrary, IKBKE overexpression caused a decrease in Bax expression an increase in Bcl-2 expression, and a decrease in apoptosis rate. Tunel results further confirmed that down-regulation of IKBKE promoted apoptosis, while overexpression of IKBKE reduced apoptosis. In addition, cells with down-regulated IKBKE had reduced migration in scratch experiments, while cells with overexpression of IKBKE had increased migration.
Conclusion: This study successfully constructed a glioma prognosis model based on immune-related genes. These findings provide new perspectives for glioma prognosis assessment and immunotherapy.
(© 2024. The Author(s).)