Result: Machine Learning to Predict Interim Response in Pediatric Classical Hodgkin Lymphoma Using Affordable Blood Tests.
Eur J Cancer. 2016 Jan;52:33-40. (PMID: 26630532)
Acta Haematol. 1982;67(1):67-70. (PMID: 6800204)
Clin Cancer Res. 2013 Feb 1;19(3):731-42. (PMID: 23224400)
Lancet. 2018 Dec 23;390(10114):2790-2802. (PMID: 29061295)
Pediatr Blood Cancer. 2016 Jun;63(6):1024-30. (PMID: 26855007)
Blood. 2009 Sep 3;114(10):2051-9. (PMID: 19584400)
Pediatr Radiol. 2013 Jan;43(1):86-92. (PMID: 23151729)
N Engl J Med. 1998 Nov 19;339(21):1506-14. (PMID: 9819449)
J Biomed Inform. 2019 Jul;95:103208. (PMID: 31078660)
J Clin Oncol. 2015 Sep 20;33(27):2975-85. (PMID: 26304892)
Med Sci Monit. 2020 Aug 27;26:e926544. (PMID: 32848125)
Lancet. 1986 Feb 8;1(8476):307-10. (PMID: 2868172)
Oncologist. 2022 Nov 3;27(11):958-970. (PMID: 36094141)
J Extracell Vesicles. 2021 Jul;10(9):e12121. (PMID: 34295456)
Leuk Lymphoma. 2009 Aug;50(8):1257-60. (PMID: 19544140)
J Clin Pathol. 1987 Mar;40(3):247-50. (PMID: 3558857)
Ann Hematol. 2020 Jan;99(1):1-5. (PMID: 31811361)
J Egypt Natl Canc Inst. 2008 Jun;20(2):99-110. (PMID: 20029465)
Leuk Res. 2017 Nov;62:91-97. (PMID: 28992524)
Medicine (Baltimore). 2017 Feb;96(5):e5973. (PMID: 28151888)
Lancet Oncol. 2022 Jun;23(6):e251-e312. (PMID: 35550267)
JCO Clin Cancer Inform. 2021 Jan;5:66-80. (PMID: 33439725)
Br J Haematol. 2015 Aug;170(3):356-66. (PMID: 25868485)
Cancer Radiother. 2012 Oct;16(7):627-32. (PMID: 23084987)
J Trop Pediatr. 1994 Jun;40(3):185-7. (PMID: 8078119)
Hell J Nucl Med. 2022 May-Aug;25(2):125-131. (PMID: 35913858)
Pediatr Blood Cancer. 2024 Jan;71(1):e30712. (PMID: 37814417)
80168379AG (Doxorubicin)
Further Information
Purpose: Response assessment of classical Hodgkin lymphoma (cHL) with positron emission tomography-computerized tomography (PET-CT) is standard of care in well-resourced settings but unavailable in most African countries. We aimed to investigate correlations between changes in PET-CT findings at interim analysis with changes in blood test results in pediatric patients with cHL in 17 South African centers.
Methods: Changes in ferritin, lactate dehydrogenase (LDH), erythrocyte sedimentation rate (ESR), albumin, total white cell count (TWC), absolute lymphocyte count (ALC), and absolute eosinophil count were compared with PET-CT Deauville scores (DS) after two cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine in 84 pediatric patients with cHL. DS 1-3 denoted rapid early response (RER) while DS 4-5 denoted slow early response (SER). Missing values were imputed using the k-nearest neighbor algorithm. Baseline and follow-up blood test values were combined into a single difference variable. Data were split into training and testing sets for analysis using Python scikit-learn 1.2.2 with logistic regression, random forests, naïve Bayes, and support vector machine classifiers.
Results: Random forest analysis achieved the best validated test accuracy of 73% when predicting RER or SER from blood samples. When applied to the full data set, the optimal model had a predictive accuracy of 80% and a receiver operating characteristic AUC of 89%. The most predictive variable was the differences in ALC, contributing 21% to the model. Differences in ferritin, LDH, and TWC contributed 15%-16%. Differences in ESR, hemoglobin, and albumin contributed 11%-12%.
Conclusion: Changes in low-cost, widely available blood tests may predict chemosensitivity for pediatric cHL without access to PET-CT, identifying patients who may not require radiotherapy. Changes in these nonspecific blood tests should be assessed in combination with clinical findings and available imaging to avoid undertreatment.