Treffer: On QSPR analysis of pulmonary cancer drugs using python-driven topological modeling.
Front Pharmacol. 2018 Dec 12;9:1461. (PMID: 30631279)
BMC Cancer. 2024 Feb 19;24(1):228. (PMID: 38373960)
Med Oncol. 2024 Jun 12;41(7):173. (PMID: 38864966)
Quant Imaging Med Surg. 2024 Aug 1;14(8):5460-5472. (PMID: 39144023)
Cell Death Discov. 2024 Mar 12;10(1):131. (PMID: 38472205)
Cell Oncol (Dordr). 2025 Feb;48(1):123-138. (PMID: 38888847)
Drug Metab Rev. 2024 Nov;56(4):349-358. (PMID: 39350738)
PeerJ. 2023 Aug 10;11:e15844. (PMID: 37581117)
Acta Crystallogr C Struct Chem. 2024 Mar 1;80(Pt 3):62-65. (PMID: 38323998)
J Chem Inf Model. 2024 Apr 8;64(7):2654-2669. (PMID: 38373300)
SAR QSAR Environ Res. 2023 Jul-Sep;34(7):569-589. (PMID: 37538006)
Drug Dev Res. 2022 Feb;83(1):16-54. (PMID: 34762760)
Pharmaceuticals (Basel). 2024 Aug 09;17(8):. (PMID: 39204158)
J Ethnopharmacol. 2024 Nov 15;334:118343. (PMID: 38750985)
Sci Rep. 2024 Mar 25;14(1):7080. (PMID: 38528019)
Chem Biol Drug Des. 2024 Apr;103(4):e14517. (PMID: 38610074)
Saudi Pharm J. 2024 Mar;32(3):101971. (PMID: 38357701)
Cancers (Basel). 2024 May 25;16(11):. (PMID: 38893134)
Endocr Relat Cancer. 2024 Jul 02;31(8):. (PMID: 38828895)
Int J Biol Macromol. 2024 Nov;279(Pt 4):135455. (PMID: 39260653)
Heliyon. 2024 Jun 11;10(12):e32397. (PMID: 38975153)
Nat Cancer. 2024 Jan;5(1):66-84. (PMID: 38151625)
Genes Chromosomes Cancer. 2024 May;63(5):e23248. (PMID: 38801095)
Horm Metab Res. 2024 Sep;56(9):649-653. (PMID: 38278145)
Cyborg Bionic Syst. 2023;4:0013. (PMID: 36951809)
Int J Biol Sci. 2024 May 19;20(8):3028-3045. (PMID: 38904022)
Sci Rep. 2024 Jun 28;14(1):14955. (PMID: 38942802)
Sci Rep. 2024 Jul 8;14(1):15712. (PMID: 38977894)
Heliyon. 2024 Jan 08;10(2):e23981. (PMID: 38293487)
Acta Pharmacol Sin. 2024 Aug;45(8):1727-1739. (PMID: 38605180)
Sci Rep. 2024 Jun 7;14(1):13150. (PMID: 38849399)
Weitere Informationen
In this paper, we discussed the role of topological descriptors in the QSPR modeling of pulmonary cancer drugs. Degree-based topological indices were computed using computational methods driven by Python that are mathematical representations of properties of molecules without physical measurement. These descriptors were analyzed through linear regression models using SPSS software to predict significant physicochemical properties like boiling point, flash point, molar refractivity, and polarizability. The results show excellent correlations between the computed indices and the observed properties, except for flash point, which ascertains the dependability of the approach in QSPR analysis. The integration of computational and mathematical chemistry will make it easier to evaluate drugs because it can assure consistent data for preclinical development. The paper also reveals specific indices that are superior to others regarding predictive accuracy, thus giving a basis for refining the models to suit the individual compound. This review sets the pace for establishing methodologies that are efficient in designing new and efficient treatments against cancer since it gives insight into the strengths and limitations of topological modeling. This work marked the transformation in accelerating the math involved in drug discovery to reduce such research costs.
(© 2025. The Author(s).)
Declarations. Competing interests: The authors declare no competing interests.