Treffer: Multiple machine learning algorithms identify 13 types of cell death-critical genes in large and multiple non-alcoholic steatohepatitis cohorts.
J Hepatol. 1986;2(2):165-73. (PMID: 3958472)
J Hepatol. 2022 Nov;77(5):1373-1385. (PMID: 35750138)
Nat Rev Gastroenterol Hepatol. 2018 Jan;15(1):11-20. (PMID: 28930295)
Gut. 2019 Mar;68(3):533-546. (PMID: 29374630)
Surgery. 2023 Sep;174(3):723-726. (PMID: 37419761)
Nat Rev Gastroenterol Hepatol. 2019 Mar;16(3):145-159. (PMID: 30482910)
Exp Mol Med. 2023 Aug;55(8):1573-1594. (PMID: 37612413)
Lancet Gastroenterol Hepatol. 2023 Jul;8(7):660-670. (PMID: 37060912)
Sci Rep. 2016 Oct 10;6:34605. (PMID: 27721459)
Clin Mol Hepatol. 2023 Jan;29(1):77-98. (PMID: 36226471)
J Hepatol. 2019 Mar;70(3):531-544. (PMID: 30414863)
Front Immunol. 2021 Feb 08;11:616044. (PMID: 33628208)
Lipids Health Dis. 2024 Jan 23;23(1):23. (PMID: 38263097)
Sci Transl Med. 2023 Jan 4;15(677):eadd3949. (PMID: 36599008)
J Hepatol. 2023 Feb;78(2):415-429. (PMID: 36209983)
Gastroenterology. 2021 Sep;161(3):1030-1042.e8. (PMID: 34416976)
J Gastroenterol. 2018 Mar;53(3):362-376. (PMID: 29247356)
Hepatology. 2005 Jun;41(6):1313-21. (PMID: 15915461)
Annu Rev Med. 2022 Jan 27;73:529-544. (PMID: 34809436)
Inflamm Bowel Dis. 1999 Nov;5(4):285-94. (PMID: 10579123)
JAMA. 2020 Mar 24;323(12):1175-1183. (PMID: 32207804)
Nat Rev Gastroenterol Hepatol. 2018 Jun;15(6):349-364. (PMID: 29740166)
J Hepatol. 2017 Oct;67(4):862-873. (PMID: 28642059)
Lipids Health Dis. 2024 May 8;23(1):137. (PMID: 38720280)
Hepatology. 2011 Mar;53(3):810-20. (PMID: 21319198)
Gastroenterology. 2020 May;158(7):1913-1928. (PMID: 32044315)
Gut. 2005 Jan;54(1):134-41. (PMID: 15591519)
J Hepatol. 2018 Feb;68(2):280-295. (PMID: 29154964)
Nat Biotechnol. 2008 Mar;26(3):303-4. (PMID: 18327243)
Gastroenterology. 2016 Jun;150(8):1769-77. (PMID: 26928243)
Methods Mol Biol. 2018;1711:243-259. (PMID: 29344893)
J Gastroenterol. 2021 Nov;56(11):951-963. (PMID: 34533632)
Nat Rev Gastroenterol Hepatol. 2018 Mar;15(3):130-131. (PMID: 29443116)
Nat Commun. 2019 Apr 3;10(1):1523. (PMID: 30944313)
J Clin Immunol. 1995 May;15(3):121-9. (PMID: 7559914)
Clin Mol Hepatol. 2023 Feb;29(Suppl):S302-S318. (PMID: 36384146)
Growth Horm IGF Res. 2020 Aug - Oct;53-54:101333. (PMID: 32717585)
Nucleic Acids Res. 2023 Jan 6;51(D1):D870-D876. (PMID: 36300619)
PLoS One. 2021 Nov 23;16(11):e0260313. (PMID: 34813621)
Signal Transduct Target Ther. 2022 Aug 13;7(1):287. (PMID: 35963848)
Nat Med. 2018 Jul;24(7):908-922. (PMID: 29967350)
Hepatology. 2023 Feb 1;77(2):558-572. (PMID: 35712786)
J Bioinform Syst Biol. 2023;6(4):379-383. (PMID: 38390437)
Weitere Informationen
Background: Dysregulated programmed cell death pathways mechanistically contribute to hepatic inflammation and fibrogenesis in non-alcoholic steatohepatitis (NASH). Identification of cell death genes may offer insights into diagnostic and therapeutic strategies for NASH.
Methods: Data from multiple NASH cohorts were integrated, and 12 machine learning algorithms were applied to identify key dysregulated cell death-related genes and develop a binary classification model for NASH. Spearman's rank correlation coefficients quantified associations between these genes and clinical markers, immune infiltration profiles, and signature genes encoding pro-inflammatory mediators, metabolic regulators, and fibrotic drivers. Gene set enrichment analysis (GSEA) was performed to delineate the mechanistic underpinnings of these key genes. Consensus clustering analysis was then used to stratify patients with NASH into distinct phenotypic subgroups based on expression levels of these genes.
Results: A NASH prediction model, developed using the random forest (RF) algorithm, demonstrated high diagnostic accuracy across multiple cohorts. Four key genes, enriched in lipid metabolism and inflammation pathways, were identified. Their transcriptional levels were significantly correlated with the non-alcoholic fatty liver disease activity score (NAS), hepatic inflammatory infiltration, molecular signatures of metabolic dysregulation (lipid homeostasis regulators), and fibrosis progression. These genes also enabled accurate classification of patients with NASH into clusters reflecting varying disease severity.
Conclusions: A binary classification model, developed using the RF algorithm, accurately identified patients with NASH. The four cell death genes, identified through 12 machine learning algorithms, represent potential biomarkers and therapeutic targets for NASH. These genes contribute to inflammation-related immune cell activation, lipid metabolism dysregulation, and liver fibrosis, highlighting the complex interplay between cell death and NASH progression.
(© 2025. The Author(s).)
Declarations. Ethics approval and consent to participate: The ethical aspect of the study was aptly addressed, with the research protocol receiving due approval from the Ethics Committee of The First Affiliated Hospital of Anhui Medical University (Approval number: 2023497) (Supplementary Fig. 5). To uphold ethical standards, all participants provided their informed consent prior to their inclusion in the study. Competing interests: The authors declare no competing interests.