Treffer: RABiTPy: an open-source Python software for rapid, AI-powered bacterial tracking and analysis.
Front Microbiol. 2021 Aug 27;12:706426. (PMID: 34512583)
Nat Rev Microbiol. 2022 Mar;20(3):161-173. (PMID: 34548639)
Nature. 2020 Sep;585(7825):357-362. (PMID: 32939066)
Nat Methods. 2020 Mar;17(3):261-272. (PMID: 32015543)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
BMC Bioinformatics. 2020 Apr 29;21(1):166. (PMID: 32349658)
Nat Methods. 2021 Jan;18(1):100-106. (PMID: 33318659)
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17771-6. (PMID: 25468981)
Nat Phys. 2021 Dec;17(12):1426-1431. (PMID: 35035514)
Nature. 2016 Nov 24;539(7630):530-535. (PMID: 27749817)
Nat Rev Microbiol. 2022 Oct;20(10):621-635. (PMID: 35115704)
Annu Rev Genet. 2008;42:253-68. (PMID: 18652543)
Sci Adv. 2020 Mar 04;6(10):eaay6616. (PMID: 32181348)
Methods. 2017 Feb 15;115:80-90. (PMID: 27713081)
Virulence. 2021 Dec;12(1):2201-2213. (PMID: 34515614)
Cell. 2015 May 21;161(5):988-997. (PMID: 26000479)
Mol Microbiol. 2016 Feb;99(4):767-77. (PMID: 26538279)
J Bacteriol. 2019 May 8;201(11):. (PMID: 30858303)
J Bacteriol. 2013 Jul;195(14):3201-12. (PMID: 23667240)
Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2117377119. (PMID: 35727978)
J Bacteriol. 2019 Sep 6;201(19):. (PMID: 31308071)
Nat Methods. 2019 Dec;16(12):1226-1232. (PMID: 31570887)
PeerJ. 2014 Jun 19;2:e453. (PMID: 25024921)
FEMS Microbiol Rev. 2021 Nov 23;45(6):. (PMID: 34227665)
Nat Methods. 2022 Nov;19(11):1438-1448. (PMID: 36253643)
Curr Biol. 2014 Feb 17;24(4):R169-73. (PMID: 24556443)
Nat Microbiol. 2016 Jun 20;1(7):16077. (PMID: 27572972)
PLoS One. 2013 Dec 31;8(12):e81936. (PMID: 24391710)
Mol Microbiol. 2011 May;80(3):612-27. (PMID: 21414037)
Science. 2007 Feb 9;315(5813):853-6. (PMID: 17289998)
Biophys J. 2018 Mar 27;114(6):1411-1419. (PMID: 29590598)
PLoS Pathog. 2014 Jul 17;10(7):e1004275. (PMID: 25033386)
Weitere Informationen
Bacterial tracking is crucial for understanding the mechanisms governing motility, chemotaxis, cell division, biofilm formation, and pathogenesis. Although modern microscopy and computing have enabled the collection of large datasets, many existing tools struggle with big data processing or with accurately detecting, segmenting, and tracking bacteria of various shapes. To address these issues, we developed RABiTPy, an open-source Python software pipeline that integrates traditional and artificial intelligence-based segmentation with tracking tools within a user-friendly framework. RABiTPy runs interactively in Jupyter notebooks and supports numerous image and video formats. Users can select from adaptive, automated thresholding, or AI-based segmentation methods, fine-tuning parameters to fit their needs. The software offers customizable parameters to enhance tracking efficiency, and its streamlined handling of large datasets offers an alternative to existing tracking software by emphasizing usability and modular integration. RABiTPy supports GPU and CPU processing as well as cloud computing. It offers comprehensive spatiotemporal analyses that includes trajectories, motile speeds, mean squared displacement, and turning angles-while providing a variety of visualization options. With its scalable and accessible platform, RABiTPy empowers researchers, even those with limited coding experience, to analyze bacterial physiology and behavior more effectively. By reducing technical barriers, this tool has the potential to accelerate discoveries in microbiology.
(© 2025. The Author(s).)
Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication: Not applicable. Availability and requirements: Project name: RABiTPy: Project home page: https://pypi.org/project/RABiTPy/ : Operating system(s): Platform independent: Programming language: Python: Other requirements: Python less that 3.11, greater than or equal to 3.10: License: MIT license: Any restrictions to use by non-academics: license needed. Competing interests: The authors declare no competing interests.