Treffer: Fine-Grained Concreteness Effects on Word Processing and Representation Across Three Tasks: An ERP Study.
Original Publication: Baltimore, Williams & Wilkins.
Mem Cognit. 1973 Mar;1(1):56-60. (PMID: 24214476)
Neuroimage. 2005 Aug 1;27(1):188-200. (PMID: 15893940)
Brain Res Cogn Brain Res. 2002 Dec;15(1):99-103. (PMID: 12433385)
Ann N Y Acad Sci. 1984;425:152-3. (PMID: 6588821)
Mem Cognit. 2009 Sep;37(6):850-65. (PMID: 19679864)
J Neurophysiol. 2019 May 1;121(5):1585-1587. (PMID: 30785804)
J Neurosci Methods. 2004 Mar 15;134(1):9-21. (PMID: 15102499)
PLoS One. 2023 Oct 20;18(10):e0293031. (PMID: 37862357)
Psychol Res. 2022 Nov;86(8):2451-2467. (PMID: 33170357)
Front Syst Neurosci. 2008 Nov 24;2:4. (PMID: 19104670)
Nat Rev Neurosci. 2008 Dec;9(12):920-33. (PMID: 19020511)
Electroencephalogr Clin Neurophysiol. 1975 Aug;39(2):131-43. (PMID: 50210)
Brain Lang. 2013 Apr;125(1):47-53. (PMID: 23454073)
Neuropsychologia. 2012 Apr;50(5):880-91. (PMID: 22313624)
Brain Topogr. 1992 Fall;5(1):17-25. (PMID: 1463655)
Q J Exp Psychol (Hove). 2020 Mar;73(3):384-395. (PMID: 31476964)
Front Neurosci. 2014 Nov 12;8:368. (PMID: 25429257)
Philos Trans R Soc Lond B Biol Sci. 2018 Aug 5;373(1752):. (PMID: 29915011)
Brain Sci. 2021 Jul 07;11(7):. (PMID: 34356132)
Cereb Cortex. 2009 Dec;19(12):2767-96. (PMID: 19329570)
Psychophysiology. 2002 Nov;39(6):781-90. (PMID: 12462506)
Brain Res. 2007 May 7;1148:138-48. (PMID: 17391654)
Cortex. 2013 Mar;49(3):611-25. (PMID: 23260615)
Exp Brain Res. 2011 Jul;212(3):347-58. (PMID: 21656220)
PLoS One. 2017 Jan 3;12(1):e0169472. (PMID: 28046070)
Neuroimage. 2020 Aug 15;217:116892. (PMID: 32371118)
Behav Res Methods. 2013 Jun;45(2):440-61. (PMID: 23055168)
J Exp Psychol Gen. 2011 Feb;140(1):14-34. (PMID: 21171803)
Brain Lang. 2008 Feb;104(2):145-58. (PMID: 17659768)
Psychophysiology. 2021 Mar;58(3):e13750. (PMID: 33340124)
Brain Res Cogn Brain Res. 2000 Sep;10(1-2):67-75. (PMID: 10978693)
Psychophysiology. 2013 May;50(5):431-40. (PMID: 23445520)
J Exp Psychol Learn Mem Cogn. 1999 May;25(3):721-42. (PMID: 10368929)
Neurosci Lett. 2008 Jan 3;430(1):48-53. (PMID: 18035489)
J Cogn Neurosci. 2007 Aug;19(8):1407-19. (PMID: 17651011)
Sci Rep. 2018 Jul 13;8(1):10636. (PMID: 30006530)
Neuron. 2008 Dec 26;60(6):1126-41. (PMID: 19109916)
J Cogn Neurosci. 2000 Nov;12(6):1024-37. (PMID: 11177422)
Neuroimage. 2013 Feb 15;67:111-8. (PMID: 23123297)
Percept Psychophys. 1996 Apr;58(3):390-400. (PMID: 8935900)
Psychophysiology. 1981 Sep;18(5):493-513. (PMID: 7280146)
Psychophysiology. 2001 May;38(3):557-77. (PMID: 11352145)
Psychon Bull Rev. 2008 Oct;15(5):971-9. (PMID: 18926991)
Electroencephalogr Clin Neurophysiol. 1989 Feb;72(2):184-7. (PMID: 2464490)
Neuroimage. 2005 Feb 1;24(3):624-34. (PMID: 15652298)
Nat Rev Neurosci. 2017 Jan;18(1):42-55. (PMID: 27881854)
Dev Sci. 2018 Mar;21(2):. (PMID: 28224689)
Behav Res Methods. 2014 Sep;46(3):887-903. (PMID: 24150921)
Lang Linguist (Taipei). 2015 Jul;16(4):503-515. (PMID: 27559305)
Cogn Emot. 2019 Jun;33(4):848-854. (PMID: 29873624)
Mem Cognit. 1992 Jan;20(1):96-104. (PMID: 1549068)
Hum Brain Mapp. 2010 Oct;31(10):1459-68. (PMID: 20108224)
J Exp Psychol Learn Mem Cogn. 1994 Jul;20(4):804-23. (PMID: 8064248)
Q J Exp Psychol (Hove). 2008 Feb;61(2):292-323. (PMID: 17853203)
Psychol Bull. 2017 Mar;143(3):263-292. (PMID: 28095000)
Front Hum Neurosci. 2012 Feb 14;6:11. (PMID: 22347855)
Annu Rev Psychol. 2011;62:621-47. (PMID: 20809790)
Neurosci Biobehav Rev. 2001 Jun;25(4):355-73. (PMID: 11445140)
Psychophysiology. 2004 Sep;41(5):665-78. (PMID: 15318873)
Behav Res Methods. 2013 Sep;45(3):718-30. (PMID: 23239067)
Front Hum Neurosci. 2015 Feb 10;9:28. (PMID: 25713520)
Psychol Sci. 2015 Dec;26(12):1887-97. (PMID: 26525074)
Front Hum Neurosci. 2012 Oct 08;6:275. (PMID: 23060778)
Brain Lang. 2012 Mar;120(3):251-8. (PMID: 22041121)
Annu Rev Psychol. 2023 Jan 18;74:137-165. (PMID: 35961038)
Brain Res. 2010 Feb 8;1313:172-84. (PMID: 20005214)
Cereb Cortex. 2018 Dec 1;28(12):4305-4318. (PMID: 29186345)
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4101-5. (PMID: 26737196)
Lang Cogn Neurosci. 2018;33(8):1063-1082. (PMID: 33912620)
Acta Psychol (Amst). 2014 Jul;150:80-4. (PMID: 24831463)
Cereb Cortex. 2014 Jul;24(7):1767-77. (PMID: 23408565)
Neuropsychologia. 2011 Apr;49(5):970-983. (PMID: 21219919)
J Cogn. 2018 Jan 12;1(1):9. (PMID: 31517183)
J Neurosci Methods. 2024 Jan 1;401:109991. (PMID: 37884082)
J Cogn. 2023 Oct 10;6(1):61. (PMID: 37841669)
Psychophysiology. 2022 Jan;59(1):e13940. (PMID: 34520568)
Biol Psychol. 2018 May;135:159-169. (PMID: 29665431)
Brain Lang. 2020 Dec;211:104863. (PMID: 33039774)
Front Psychol. 2019 Feb 13;10:278. (PMID: 30814969)
J Neurosci. 2013 Jun 19;33(25):10552-8. (PMID: 23785167)
Science. 1977 Aug 19;197(4305):792-5. (PMID: 887923)
Brain. 2005 Mar;128(Pt 3):615-27. (PMID: 15548554)
Weitere Informationen
People process concrete words more quickly and accurately than abstract ones-the so-called "concreteness effect." This advantage also reflects differences in how the brain processes and stores concrete versus abstract words. In this electrophysiological study, we treated word concreteness as a continuous variable and examined its effects on ERPs across three tasks with distinct processing demands (semantic, affective, grammatical). Behavioral results revealed task-dependent concreteness effects: in the semantic task, reaction times were faster for words at both concreteness extremes, and the classical linear advantage emerged for concrete words. Mass univariate ERP analyses revealed distinct spatiotemporal patterns of task-dependent concreteness effects. In the semantic task, we identified three significant clusters reflecting increased parietal N2/P3-like and sustained bilateral fronto-temporal negativity ERPs and decreased central N400-like ERP for abstract words. By contrast, the affective task elicited an increased parietal P600-like ERP for abstract words. Moreover, results from multivariate representational similarity analysis and an intersection analysis revealed that concreteness is encoded in ERP spatiotemporal patterns from 450 ms onwards, regardless of task, suggesting its role not only as an organizational principle in semantic representation, but also as a factor influencing downstream word processing and univariate ERP concreteness effects. Our findings challenge and extend existing theories like the dual coding and context availability ones, highlighting the importance of treating concreteness as a continuous variable and considering task context in word processing studies. This approach, enabled by advanced analytical techniques, provides a more nuanced understanding of how the brain processes and represents words.
(© 2025 The Author(s). Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.)