Treffer: MIMIC: a Python package for simulating, inferring, and predicting microbial community interactions and dynamics.
IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):1971-1982. (PMID: 36449576)
mSystems. 2022 Oct 26;7(5):e0013222. (PMID: 36069455)
Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15718-23. (PMID: 15505215)
R Soc Open Sci. 2021 Jul 21;8(7):201378. (PMID: 34295510)
Curr Opin Microbiol. 2018 Aug;44:41-49. (PMID: 30041083)
J Stat Softw. 2010 Jul;35(4):1-81. (PMID: 21603108)
Nat Protoc. 2019 Mar;14(3):639-702. (PMID: 30787451)
FEMS Microbiol Lett. 2009 Jan;290(1):62-9. (PMID: 19016876)
Nature. 2012 Oct 4;490(7418):55-60. (PMID: 23023125)
Nat Methods. 2024 Aug;21(8):1454-1461. (PMID: 39122941)
Nat Immunol. 2013 Jul;14(7):685-90. (PMID: 23778796)
Genome Biol. 2016 Jun 03;17(1):121. (PMID: 27259475)
Bioessays. 2017 Feb;39(2):. (PMID: 28000336)
Nat Commun. 2021 Jan 28;12(1):672. (PMID: 33510148)
Elife. 2022 Aug 19;11:. (PMID: 35983746)
Nat Med. 2013 May;19(5):576-85. (PMID: 23563705)
PLoS Comput Biol. 2017 Feb 21;13(2):e1005364. (PMID: 28222117)
Cell Host Microbe. 2013 Jul 17;14(1):26-37. (PMID: 23870311)
Digestion. 2021;102(4):508-515. (PMID: 32932258)
PLoS Comput Biol. 2013;9(12):e1003388. (PMID: 24348232)
mSystems. 2023 Jun 29;8(3):e0075722. (PMID: 37278524)
ISME J. 2019 Nov;13(11):2647-2655. (PMID: 31253856)
Genome Biol. 2011;12(5):R50. (PMID: 21624126)
mSystems. 2020 Jan 21;5(1):. (PMID: 31964767)
Neurogastroenterol Motil. 2011 Mar;23(3):187-92. (PMID: 21303428)
Nat Commun. 2020 Oct 19;11(1):5281. (PMID: 33077707)
Biotechnol Adv. 2021 Jul-Aug;49:107739. (PMID: 33794304)
Weitere Informationen
Summary: The study of microbial communities is vital for understanding their impact on environmental, health, and technological domains. The Modelling and Inference of MICrobiomes Project (MIMIC) introduces a Python package designed to advance the simulation, inference, and prediction of microbial community interactions and dynamics. Addressing the complex nature of microbial ecosystems, MIMIC integrates a suite of mathematical models, including previously used approaches such as Generalized Lotka-Volterra (gLV), Gaussian Processes (GP), and Vector Autoregression (VAR) plus newly developed models for integrating multi-omic data, to offer a versatile framework for analyzing microbial dynamics. By leveraging Bayesian inference and machine learning techniques, MIMIC provides the ability to infer the dynamics of microbial communities from empirical data, facilitating a deeper understanding of their complex biological processes, unveiling possible unknown ecological interactions, and enabling the design of microbial communities. Such insights could help to advance microbial ecology research, optimizing biotechnological applications, and contribute to environmental sustainability and public health strategies. MIMIC is designed for flexibility and ease of use, aiming to support researchers and practitioners in microbial ecology and microbiome research.
Availability and Implementation: MIMIC is freely available under the MIT License at https://github.com/ucl-cssb/MIMIC. It is implemented in Python (version 3.7 or higher) and is compatible with Windows, macOS, and Linux operating systems. MIMIC depends on standard Python libraries including NumPy, SciPy, and PyMC. Comprehensive examples and tutorials (including the main text demonstrations) are provided as Jupyter notebooks in the examples/directory and at the MIMIC Docs website, along with detailed installation instructions and real-world data use cases. The software will remain freely available for at least two years following publication. A code snapshot for this publication is also available at Zenodo: https://doi.org/10.5281/zenodo.15149003.
(© The Author(s) 2025. Published by Oxford University Press.)