Treffer: MultiOmicsAgent: Guided Extreme Gradient-Boosted Decision Trees-Based Approaches for Biomarker-Candidate Discovery in Multiomics Data.
Mol Cell Proteomics. 2021;20:100083. (PMID: 33887487)
Nat Metab. 2023 Jan;5(1):80-95. (PMID: 36717752)
Mol Syst Biol. 2022 Nov;18(11):e11033. (PMID: 36321552)
Nat Cancer. 2024 Feb;5(2):299-314. (PMID: 38253803)
Bioinformatics. 2023 Aug 1;39(8):. (PMID: 37632789)
Nat Commun. 2023 Oct 12;14(1):6414. (PMID: 37828014)
Nat Chem Biol. 2005 Oct;1(5):252-62. (PMID: 16408053)
J Proteome Res. 2007 Sep;6(9):3760-70. (PMID: 17705523)
J Proteome Res. 2021 Nov 5;20(11):4974-4984. (PMID: 34677978)
Mol Cell Proteomics. 2023 Jun;22(6):100561. (PMID: 37119971)
J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Apr 15;866(1-2):77-88. (PMID: 18033744)
Curr Protoc Bioinformatics. 2016 Sep 07;55:14.10.1-14.10.91. (PMID: 27603023)
Nature. 2003 Mar 13;422(6928):198-207. (PMID: 12634793)
BMC Bioinformatics. 2015 Oct 05;16:318. (PMID: 26437641)
Nat Commun. 2020 Oct 16;11(1):5248. (PMID: 33067419)
Methods Mol Biol. 2021;2228:85-116. (PMID: 33950486)
Nat Biotechnol. 2017 Aug;35(8):781-788. (PMID: 28604659)
Mol Syst Biol. 2018 Jun 20;14(6):e8124. (PMID: 29925568)
Bioinformatics. 2023 Dec 1;39(12):. (PMID: 38096588)
Anal Bioanal Chem. 2007 Oct;389(4):1017-31. (PMID: 17668192)
J Proteome Res. 2022 Apr 1;21(4):891-898. (PMID: 35220718)
Weitere Informationen
MultiOmicsAgent (MOAgent) is an innovative, Python-based open-source tool for biomarker discovery, utilizing machine learning techniques, specifically extreme gradient-boosted decision trees, to process multiomics data. With its cross-platform compatibility, user-oriented graphical interface, and well-documented API, MOAgent not only meets the needs of both coding professionals and those new to machine learning but also addresses common data analysis challenges like normalization, data incompleteness, class imbalances and data leakage between disjoint data splits. MOAgent's guided data analysis strategy opens up data-driven insights from digitized clinical biospecimen cohorts, making advanced data analysis accessible and reliable for a wide audience.