Treffer: NESTML: a generic modeling language and code generation tool for the simulation of spiking neural networks with advanced plasticity rules.

Title:
NESTML: a generic modeling language and code generation tool for the simulation of spiking neural networks with advanced plasticity rules.
Authors:
Linssen C; Simulation and Data Lab Neuroscience, Jülich Supercomputer Centre, Institute for Advanced Simulation, Jülich-Aachen Research Alliance, Forschungszentrum Jülich GmbH, Jülich, Germany.; Institute for Advanced Simulation IAS-6, Forschungszentrum Jülich GmbH, Jülich, Germany.; Department of Computer Science 3 - Software Engineering, RWTH Aachen University, Aachen, Germany., Babu PN; Simulation and Data Lab Neuroscience, Jülich Supercomputer Centre, Institute for Advanced Simulation, Jülich-Aachen Research Alliance, Forschungszentrum Jülich GmbH, Jülich, Germany.; Department of Computer Science 3 - Software Engineering, RWTH Aachen University, Aachen, Germany., Eppler JM; Simulation and Data Lab Neuroscience, Jülich Supercomputer Centre, Institute for Advanced Simulation, Jülich-Aachen Research Alliance, Forschungszentrum Jülich GmbH, Jülich, Germany., Koll L; Department of Computer Science 3 - Software Engineering, RWTH Aachen University, Aachen, Germany., Rumpe B; Department of Computer Science 3 - Software Engineering, RWTH Aachen University, Aachen, Germany., Morrison A; Institute for Advanced Simulation IAS-6, Forschungszentrum Jülich GmbH, Jülich, Germany.; Department of Computer Science 3 - Software Engineering, RWTH Aachen University, Aachen, Germany.
Source:
Frontiers in neuroinformatics [Front Neuroinform] 2025 Jun 04; Vol. 19, pp. 1544143. Date of Electronic Publication: 2025 Jun 04 (Print Publication: 2025).
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101477957 Publication Model: eCollection Cited Medium: Print ISSN: 1662-5196 (Print) Linking ISSN: 16625196 NLM ISO Abbreviation: Front Neuroinform Subsets: PubMed not MEDLINE
Imprint Name(s):
Original Publication: Lausanne, Switzerland : Frontiers Research Foundation, 2007-
References:
Front Neuroinform. 2018 Feb 16;12:2. (PMID: 29503613)
J Comput Neurosci. 2012 Apr;32(2):309-26. (PMID: 21837455)
Front Neuroinform. 2018 Jan 18;11:76. (PMID: 29403370)
Neural Comput. 2007 Jan;19(1):47-79. (PMID: 17134317)
Sci Rep. 2020 Jan 15;10(1):410. (PMID: 31941893)
Biol Cybern. 1999 Nov;81(5-6):381-402. (PMID: 10592015)
Front Integr Neurosci. 2022 Oct 03;16:923468. (PMID: 36310713)
eNeuro. 2021 Nov 29;8(6):. (PMID: 34764188)
PLoS Comput Biol. 2010 Jun 17;6(6):e1000815. (PMID: 20585541)
Front Neuroinform. 2018 Nov 05;12:68. (PMID: 30455637)
Front Neuroinform. 2010 Oct 05;4:113. (PMID: 21031031)
PLoS Comput Biol. 2022 Jun 21;18(6):e1010233. (PMID: 35727857)
Sci Rep. 2016 Jan 07;6:18854. (PMID: 26740369)
Neuron. 2019 May 22;102(4):735-744. (PMID: 31121126)
Network. 2012;23(4):131-49. (PMID: 22994683)
J Neurosci. 1998 Dec 15;18(24):10464-72. (PMID: 9852584)
Exp Physiol. 2009 May;94(5):472-85. (PMID: 19151076)
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W541-5. (PMID: 21672956)
PLoS Comput Biol. 2022 Sep 8;18(9):e1010086. (PMID: 36074778)
Sci Data. 2016 Mar 15;3:160018. (PMID: 26978244)
Front Neuroinform. 2009 Jan 27;2:11. (PMID: 19194529)
Front Integr Neurosci. 2022 Oct 14;16:974177. (PMID: 36310714)
IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):1734-1748. (PMID: 37991917)
Front Neuroinform. 2014 Sep 25;8:79. (PMID: 25309419)
PeerJ Comput Sci. 2017 Dec 18;3:e142. (PMID: 34722870)
Front Neuroinform. 2009 Jan 29;2:12. (PMID: 19198667)
BMC Bioinformatics. 2010 Apr 08;11:178. (PMID: 20377909)
Elife. 2025 Jan 10;13:. (PMID: 39792574)
OMICS. 2010 Jun;14(3):327-32. (PMID: 20455752)
Front Neuroinform. 2018 Jan 05;11:75. (PMID: 29379430)
Front Neuroinform. 2022 May 20;16:724336. (PMID: 35669596)
Front Neuroinform. 2018 Dec 19;12:90. (PMID: 30618696)
Front Comput Neurosci. 2021 Feb 17;15:627620. (PMID: 33679358)
Front Neuroinform. 2018 Aug 03;12:46. (PMID: 30123121)
Neuron. 2019 Aug 7;103(3):395-411.e5. (PMID: 31201122)
Front Neuroinform. 2013 Jan 03;6:31. (PMID: 23316158)
Neural Comput. 2005 Aug;17(8):1776-801. (PMID: 15969917)
Neural Comput. 2005 Apr;17(4):903-21. (PMID: 15829094)
PLoS Comput Biol. 2022 Aug 12;18(8):e1010353. (PMID: 35960767)
J Comput Neurosci. 2006 Oct;21(2):119-29. (PMID: 16732488)
Bioinformatics. 2003 Mar 1;19(4):524-31. (PMID: 12611808)
J Comput Neurosci. 2000 May-Jun;8(3):183-208. (PMID: 10809012)
Front Neuroinform. 2018 Oct 08;12:50. (PMID: 30349471)
Elife. 2019 Aug 20;8:. (PMID: 31429824)
Front Neuroinform. 2018 Nov 26;12:81. (PMID: 30534066)
Neural Comput. 2000 May;12(5):995-1007. (PMID: 10905805)
J Comput Neurosci. 2007 Dec;23(3):349-98. (PMID: 17629781)
PLoS Comput Biol. 2009 Aug;5(8):e1000456. (PMID: 19662159)
Contributed Indexing:
Keywords: model; modeling; neuron; simulation; spiking neural network; synapse
Entry Date(s):
Date Created: 20250619 Latest Revision: 20250620
Update Code:
20250620
PubMed Central ID:
PMC12174165
DOI:
10.3389/fninf.2025.1544143
PMID:
40535463
Database:
MEDLINE

Weitere Informationen

With increasing model complexity, models are typically re-used and evolved rather than starting from scratch. There is also a growing challenge in ensuring that these models can seamlessly work across various simulation backends and hardware platforms. This underscores the need to ensure that models are easily findable, accessible, interoperable, and reusable-adhering to the FAIR principles. NESTML addresses these requirements by providing a domain-specific language for describing neuron and synapse models that covers a wide range of neuroscientific use cases. The language is supported by a code generation toolchain that automatically generates low-level simulation code for a given target platform (for example, C++ code targeting NEST Simulator). Code generation allows an accessible and easy-to-use language syntax to be combined with good runtime simulation performance and scalability. With an intuitive and highly generic language, combined with the generation of efficient, optimized simulation code supporting large-scale simulations, it opens up neuronal network model development and simulation as a research tool to a much wider community. While originally developed in the context of NEST Simulator, NESTML has been extended to target other simulation platforms, such as the SpiNNaker neuromorphic hardware platform. The processing toolchain is written in Python and is lightweight and easily customizable, making it easy to add support for new simulation platforms.
(Copyright © 2025 Linssen, Babu, Eppler, Koll, Rumpe and Morrison.)

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.