Treffer: Sexual conflict as a constraint on asexual reproduction: an empirical review.
Heredity (Edinb). 1948 Dec;2(Pt. 3):349-68. (PMID: 18103134)
Science. 1985 Jan 4;227(4682):77-8. (PMID: 3964961)
Curr Zool. 2018 Oct;64(5):559-573. (PMID: 30323835)
Mol Ecol. 2010 Mar;19(6):1227-38. (PMID: 20163549)
Genetics. 1954 Jan;39(1):4-34. (PMID: 17247466)
Biol Lett. 2007 Aug 22;3(4):425-7. (PMID: 17519185)
Proc Biol Sci. 2016 Oct 26;283(1841):. (PMID: 27798298)
PLoS One. 2013;8(2):e58141. (PMID: 23469150)
Behav Genet. 1977 May;7(3):189-97. (PMID: 869858)
Evol Dev. 2003 Mar-Apr;5(2):163-8. (PMID: 12622733)
Ecol Evol. 2024 Aug 14;14(8):e70145. (PMID: 39145042)
J Evol Biol. 2003 May;16(3):523-30. (PMID: 14635853)
Cytogenet Genome Res. 2006;113(1-4):31-5. (PMID: 16575160)
J Insect Physiol. 2017 Jul;100:65-70. (PMID: 28528233)
Biodivers Data J. 2020 Sep 16;8:e56030. (PMID: 33013173)
Biol Lett. 2021 May;17(5):20210006. (PMID: 33975486)
Curr Biol. 2014 Apr 14;24(8):R305-6. (PMID: 24735848)
Evolution. 2014 Feb;68(2):595-604. (PMID: 24102073)
Evolution. 2009 Jan;63(1):84-103. (PMID: 18803687)
PLoS One. 2013 Jun 10;8(6):e66767. (PMID: 23762497)
J Evol Biol. 2003 Jan;16(1):1-6. (PMID: 14635875)
Proc Natl Acad Sci U S A. 1986 Dec;83(24):9547-50. (PMID: 3467325)
J Evol Biol. 2019 May;32(5):398-411. (PMID: 30724419)
G3 (Bethesda). 2013 Apr 9;3(4):757-762. (PMID: 23550124)
Proc Biol Sci. 2004 Dec 7;271 Suppl 6:S409-12. (PMID: 15801589)
Trends Genet. 2011 Mar;27(3):81-8. (PMID: 21334090)
J Evol Biol. 2010 Jul;23(7):1399-411. (PMID: 20456561)
Philos Trans R Soc Lond B Biol Sci. 2006 Feb 28;361(1466):375-86. (PMID: 16612895)
Mol Phylogenet Evol. 2012 May;63(2):291-8. (PMID: 22266183)
Trends Ecol Evol. 1994 Aug;9(8):289-93. (PMID: 21236857)
J Hered. 2021 Mar 12;112(1):34-44. (PMID: 33448304)
Heredity (Edinb). 2000 Feb;84 ( Pt 2):161-9. (PMID: 10762385)
Nature. 1995 Jan 19;373(6511):241-4. (PMID: 7816137)
Evol Lett. 2021 Feb 08;5(2):164-174. (PMID: 33868712)
Trends Ecol Evol. 1996 Feb;11(2):46-52. (PMID: 21237760)
Trends Ecol Evol. 1994 Nov;9(11):435-9. (PMID: 21236914)
Am Nat. 2013 Feb;181(2):223-34. (PMID: 23348776)
Heredity (Edinb). 2019 Dec;123(6):795-808. (PMID: 31413332)
Science. 1982 Oct 1;218(4567):68-70. (PMID: 17776711)
Integr Comp Biol. 2016 Oct;56(4):715-27. (PMID: 27260857)
Biol Lett. 2009 Oct 23;5(5):671-4. (PMID: 19574282)
Heredity (Edinb). 2001 Sep;87(Pt 3):373-80. (PMID: 11737284)
PeerJ. 2014 Jun 17;2:e439. (PMID: 25024909)
Trends Ecol Evol. 2012 Mar;27(3):172-8. (PMID: 22019414)
Sex Dev. 2008;2(6):290-301. (PMID: 19276631)
Annu Rev Entomol. 2014;59:321-38. (PMID: 24160422)
Philos Trans R Soc Lond B Biol Sci. 2016 Oct 19;371(1706):. (PMID: 27619698)
Bioessays. 2008 Nov;30(11-12):1138-50. (PMID: 18937362)
Trends Ecol Evol. 2009 Apr;24(4):208-17. (PMID: 19282047)
J Evol Biol. 2010 Jan;23(1):157-65. (PMID: 19888937)
Biol Rev Camb Philos Soc. 2014 Nov;89(4):805-19. (PMID: 24443922)
Science. 1965 Aug 20;149(3686):882-3. (PMID: 17737389)
Trends Ecol Evol. 2017 May;32(5):368-382. (PMID: 28318651)
Mol Ecol. 2020 Nov;29(21):4118-4127. (PMID: 32881125)
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13771-6. (PMID: 20643932)
Mol Phylogenet Evol. 2012 Jan;62(1):224-36. (PMID: 22001211)
Evolution. 2025 Apr 02;79(4):525-540. (PMID: 39713880)
Ecol Evol. 2017 Nov 23;8(1):36-52. (PMID: 29321849)
Ecol Evol. 2018 Feb 06;8(5):2698-2711. (PMID: 29531687)
Naturwissenschaften. 2021 Mar 9;108(2):10. (PMID: 33687535)
Biol Lett. 2023 Jun;19(6):20230129. (PMID: 37282490)
Philos Trans R Soc Lond B Biol Sci. 2018 Oct 5;373(1757):. (PMID: 30150220)
Curr Zool. 2022 Dec 26;70(1):115-135. (PMID: 38476141)
Ecol Evol. 2018 Jun 22;8(14):7103-7110. (PMID: 30214716)
Mutat Res. 1964 May;106:2-9. (PMID: 14195748)
Am Nat. 2003 Apr;161(4):641-56. (PMID: 12776890)
Ecol Evol. 2025 Jul 07;15(7):e71766. (PMID: 40625314)
Am Nat. 2023 Feb;201(2):229-240. (PMID: 36724461)
Ann N Y Acad Sci. 2018 Jun;1422(1):48-64. (PMID: 29524360)
J Evol Biol. 2019 Nov;32(11):1230-1241. (PMID: 31424583)
Ecol Evol. 2025 Apr 24;15(4):e71243. (PMID: 40290386)
Am Nat. 2024 Jan;203(1):73-91. (PMID: 38207137)
Curr Biol. 2016 Jun 6;26(11):1463-7. (PMID: 27185556)
Annu Rev Entomol. 2003;48:397-423. (PMID: 12221039)
J Hered. 2021 Mar 12;112(1):45-57. (PMID: 32918457)
Evolution. 2001 Apr;55(4):748-61. (PMID: 11392393)
Genetics. 2007 Jul;176(3):1713-27. (PMID: 17483405)
Mol Phylogenet Evol. 2010 Feb;54(2):542-52. (PMID: 19703573)
J Hered. 2010 Mar-Apr;101 Suppl 1:S34-41. (PMID: 20212007)
Trends Ecol Evol. 2013 May;28(5):297-306. (PMID: 23399316)
Evolution. 2011 Oct;65(10):2881-92. (PMID: 21967429)
Environ Pollut. 2006 Nov;144(2):453-62. (PMID: 16677747)
Anim Behav. 2000 Aug;60(2):145-164. (PMID: 10973716)
Trends Ecol Evol. 2017 Sep;32(9):646-652. (PMID: 28651895)
Proc Biol Sci. 2023 Mar 29;290(1995):20230261. (PMID: 36946111)
J Evol Biol. 2004 Mar;17(2):443-52. (PMID: 15009277)
Adv Genet. 1950;3:193-253. (PMID: 15425392)
Proc Biol Sci. 2023 Sep 27;290(2007):20230404. (PMID: 37727092)
Evolution. 1992 Jun;46(3):783-796. (PMID: 28568678)
Proc Biol Sci. 2001 Mar 7;268(1466):517-23. (PMID: 11296864)
Mol Phylogenet Evol. 2001 Apr;19(1):157-63. (PMID: 11286500)
Proc Biol Sci. 2013 Jun 19;280(1764):20130823. (PMID: 23782880)
Trends Ecol Evol. 1994 Nov;9(11):422-6. (PMID: 21236911)
Am Nat. 2011 Jun;177(6):780-91. (PMID: 21597254)
Genetics. 1967 Jan;55(1):157-71. (PMID: 6031599)
Curr Biol. 2023 Sep 11;33(17):3545-3560.e13. (PMID: 37516115)
J Evol Biol. 2001 Jan 8;14(1):68-74. (PMID: 29280573)
Evol Dev. 2020 Jan;22(1-2):205-217. (PMID: 31622546)
PLoS One. 2015 Sep 09;10(9):e0137181. (PMID: 26352413)
Genet Res. 1987 Apr;49(2):135-46. (PMID: 3596234)
Am Nat. 2015 Oct;186(4):519-30. (PMID: 26655575)
Mol Ecol. 2019 Sep;28(17):3929-3941. (PMID: 31386772)
Trends Ecol Evol. 1998 Feb 1;13(2):77-81. (PMID: 21238209)
Proc Biol Sci. 2010 May 7;277(1686):1435-42. (PMID: 20071382)
Weitere Informationen
Theory predicts that facultatively asexual animals, which can leverage the advantages of both sexual and asexual reproduction, should outcompete obligately sexual and obligately asexual animals. Yet, paradoxically, obligate sexual reproduction predominates in many animal lineages, while the most flexible form of facultative asexuality (i.e. facultative parthenogenesis) appears to be rare. Recent theoretical work suggests that sexual conflict could help to resolve this paradox. Males that coercively fertilise females' eggs may, in the process, prevent alleles for parthenogenesis from spreading by limiting opportunities for asexual reproduction. Coercive males may also inhibit asexual reproduction by making resistance to sex disproportionately costly for females. In this review, we outline evidence of interactions with males that could impose costs on parthenogenetic females or hinder their ability to reproduce parthenogenetically in diverse animal taxa. The evidence suggests that such interactions between the sexes have the potential to mediate sexual conflict over mating and reproductive mode, both within facultative species and between closely related sexual and asexual taxa. However, the relative costs of sex and parthenogenesis are clearly context dependent, and much remains unknown. The most direct evidence for male inhibition of parthenogenesis comes from stick insects, but several other systems offer promising avenues for further investigation. Further research on the costs of mating and resistance in such systems could shed light on the reasons for the puzzling rarity of facultative parthenogenesis in nature.
(© 2025 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.)