Treffer: Neural decoding reliability: Breakthroughs and potential of brain-computer interfaces technologies in the treatment of neurological diseases.
Weitere Informationen
Neurological disorders such as Parkinson's disease, stroke, and epilepsy frequently result in irreversible disability. Brain-computer interface (BCI) technologies offer the promise of recovering or replacing impaired sensory, motor, and cognitive functions by directly stimulating cortical activity or by converting self-generated cortical activity into commands for external assistive devices. In-depth studies of cerebral cortex connectivity, function and neural hierarchical coding mechanisms can provide novel solutions for BCI-based treatments. This review summarizes the fundamental principles and history of BCI technology and current research progress, including the utilization of known cortical functions and the potential impact of newly discovered cortical functions on the future development of BCI-based applications. The article then systematically reviews the application of BCI technology for the treatment of motor, cognitive, and psychiatric disorders, innovative uses of hydrogels and carbon nanomaterials in BCI systems, and the current limitations and future research directions of BCI systems with respect to the reliability of neural decoding. This article aims to provide clinicians and researchers with the latest progress and a comprehensive overview of BCI applications for diagnosing and treating neurological diseases from in-depth studies on cerebral cortex structure and function, and to propose potential future applications based on interdisciplinary approaches, especially in enhancing the reliability of neural decoding.
(Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.)
Declaration of competing interest The authors declare that they have no conflict of interest.