Treffer: Codon Usage Evolution in Viruses: Implications for Survival and Pathogenicity.

Title:
Codon Usage Evolution in Viruses: Implications for Survival and Pathogenicity.
Authors:
Kaleem S; Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India., Dahal U; Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India. ujwalbosc@gmail.com., Devi S; Department of Forensic Science, School of Biomedical Science, Galgotias University, Greater Noida, Uttar Pradesh, 203201, India., Kour B; Kogniverse Education, Avishkaran, NIPER, Hyderabad, 50037, India., Kour S; Department of Medical Laboratory Sciences, School of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
Source:
Journal of molecular evolution [J Mol Evol] 2025 Oct; Vol. 93 (5), pp. 553-580. Date of Electronic Publication: 2025 Sep 04.
Publication Type:
Journal Article; Review
Language:
English
Journal Info:
Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0360051 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1432 (Electronic) Linking ISSN: 00222844 NLM ISO Abbreviation: J Mol Evol Subsets: MEDLINE
Imprint Name(s):
Original Publication: Berlin, New York, Springer-Verlag.
References:
Abass OA, Timofeev VI, Sarkar B et al (2022) Immunoinformatics analysis to design novel epitope based vaccine candidate targeting the glycoprotein and nucleoprotein of Lassa mammarenavirus (LASMV) using strains from Nigeria. J Biomol Struct Dyn 40:7283–7302. https://doi.org/10.1080/07391102.2021.1896387. (PMID: 10.1080/07391102.2021.189638733719908)
Afonso CL (2021) Virulence during newcastle disease viruses cross species adaptation. Viruses 13:110. https://doi.org/10.3390/v13010110. (PMID: 10.3390/v13010110334675067830468)
Aktürk Dizman Y (2023) Codon usage bias analysis of the gene encoding NAD+-dependent DNA ligase protein of invertebrate iridescent virus 6. Arch Microbiol. https://doi.org/10.1007/s00203-023-03688-5. (PMID: 10.1007/s00203-023-03688-537812231)
Al-Saffar OB (2024) SNPs variety of transforming-growth factor-beta 1 (codon 10 and codon 25) genes are related to viral hepatitis (B type and C type) disease in some Iraqi individuals. Gene Rep 36:101934. https://doi.org/10.1016/j.genrep.2024.101934. (PMID: 10.1016/j.genrep.2024.101934)
Al-Salihi KA, Khalaf JM (2021) The emerging SARS-CoV, MERS-CoV, and SARS-CoV-2: an insight into the viruses zoonotic aspects. Vet World 14:190–199. https://doi.org/10.14202/vetworld.2021.190-199. (PMID: 10.14202/vetworld.2021.190-199336428047896889)
Alom MW, Shehab MN, Sujon KM, Akter F (2021) Exploring E, NS3, and NS5 proteins to design a novel multi-epitope vaccine candidate against West Nile Virus: an in-silico approach. Inform Med Unlocked 25:100644. https://doi.org/10.1016/j.imu.2021.100644. (PMID: 10.1016/j.imu.2021.100644)
Ameni G, Zewude A, Tulu B et al (2024) A narrative review on the pandemic zoonotic RNA virus infections occurred during the last 25 years. J Epidemiol Glob Health 14:1397–1412. https://doi.org/10.1007/s44197-024-00304-7. (PMID: 10.1007/s44197-024-00304-73937801811652441)
Amin Rani N, Moin AT, Patil R et al (2023) Designing a polyvalent vaccine targeting multiple strains of varicella zoster virus using integrated bioinformatics approaches. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1291868. (PMID: 10.3389/fmicb.2023.12918683807587610704101)
Al‐Saif M, Khabar KSA (2020) Analysis of codon usage bias in human and camel MERS-CoV genomes reveals partial adaptation to human tRNA pools. J Genet Mol Biol 2020: e.g., 4751 SARS-CoV-complete/partial genomes analyzed. https://doi.org/10.1177/1176934320918861.
Anjorin A-AA, Odetokun IA, Ashaka OS, et al (2023) Critical Appraisal of Mpox (Monkeypox) in Africa using Scoping and Systematic Reviews: Epidemiology, Biochemistry, Phylogeny, Pathogenesis, Clinical Features, Diagnosis, Treatment, Biosecurity and One-Health.
Ata G, Wang H, Bai H et al (2021) Edging on mutational bias, induced natural selection from host and natural reservoirs predominates codon usage evolution in Hantaan virus. Front Microbiol. https://doi.org/10.3389/fmicb.2021.699788. (PMID: 10.3389/fmicb.2021.699788342766338283416)
Ayolabi CI, Olusola BA, Lawal AA et al (2022) Detection of novel paramyxoviruses in Chaerephon bat species in Nigeria and phylogenetics of paramyxoviruses co-evolution with bats in Africa. Zoonoses Public Health. https://doi.org/10.1111/zph.12900. (PMID: 10.1111/zph.1290034817117)
Barozai MYK (2014) Codon usage bias and RNA secondary structures analysis for virus resistant genes in Arabidopsis thaliana and Oryza sativa. Pure Appl Biol 3:81–91. https://doi.org/10.19045/bspab.2014.32005. (PMID: 10.19045/bspab.2014.32005)
Bastos V, Pacheco V, Rodrigues ÉDL et al (2023) Neuroimmunology of rabies: new insights into an ancient disease. J Med Virol. https://doi.org/10.1002/jmv.29042. (PMID: 10.1002/jmv.2904237885152)
Bauer S, Zhang F, Linhardt RJ (2021) Implications of glycosaminoglycans on viral zoonotic diseases. Diseases 9:85. https://doi.org/10.3390/diseases9040085. (PMID: 10.3390/diseases9040085348426428628766)
Behura SK, Severson DW (2013) Codon usage bias: causative factors, quantification methods and genome‐wide patterns: with emphasis on insect genomes. Biol Rev 88:49–61. https://doi.org/10.1111/j.1469-185X.2012.00242.x.
Bhattacharjee S, Ghosh D, Saha R et al (2023) Mechanism of immune evasion in mosquito-borne diseases. Pathogens 12:635. https://doi.org/10.3390/pathogens12050635. (PMID: 10.3390/pathogens120506353724230510222277)
Borges AL, Lou YC, Sachdeva R et al (2022) Widespread stop-codon recoding in bacteriophages may regulate translation of lytic genes. Nat Microbiol 7:918–927. https://doi.org/10.1038/s41564-022-01128-6. (PMID: 10.1038/s41564-022-01128-6356187729197471)
Brocato RL, Kwilas SA, Josleyn MD et al (2021) Small animal jet injection technique results in enhanced immunogenicity of hantavirus DNA vaccines. Vaccine. https://doi.org/10.1016/j.vaccine.2021.01.002. (PMID: 10.1016/j.vaccine.2021.01.00233483212)
Butt AM, Nasrullah I, Tong Y (2014) Genome-wide analysis of codon usage and influencing factors in chikungunya viruses. PLoS One 9:e90905. https://doi.org/10.1371/journal.pone.0090905.
Camacho J, Negredo A, Carrilero B et al (2023) Mutations in coding and non-coding regions in Varicella-Zoster virus causing fatal hemorrhagic fever without rash in an immunocompetent patient: case report. Infect Dis Ther 12:2621–2630. https://doi.org/10.1007/s40121-023-00884-0. (PMID: 10.1007/s40121-023-00884-03787069210651560)
Canuti M, Verhoeven JTP, Munro HJ et al (2021) Investigating the diversity and host range of novel parvoviruses from North American ducks using epidemiology, phylogenetics, genome structure, and codon usage analysis. Viruses 13:193. https://doi.org/10.3390/v13020193. (PMID: 10.3390/v13020193335253867912424)
Carabelli AM, Peacock TP, Thorne LG et al (2023) SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. https://doi.org/10.1038/s41579-022-00841-7. (PMID: 10.1038/s41579-022-00841-7366534469847462)
Carey BD, Yu S, Geiger J et al (2024) A lassa virus live attenuated vaccine candidate that is safe and efficacious in guinea pigs. NPJ Vaccines 9:220. https://doi.org/10.1038/s41541-024-01012-w. (PMID: 10.1038/s41541-024-01012-w3955182311570604)
Carmi G, Gorohovski A, Mukherjee S, Frenkel-Morgenstern M (2021) Non-optimal codon usage preferences of coronaviruses determine their promiscuity for infecting multiple hosts. FEBS J. https://doi.org/10.1111/febs.15835. (PMID: 10.1111/febs.1583533756061)
Chang JY, Balch C, Oh HS (2024) Toward the eradication of herpes simplex virus: vaccination and beyond. Viruses 16:1476. https://doi.org/10.3390/v16091476. (PMID: 10.3390/v160914763933995211437400)
Chaudhary N, Singh NK, Tyagi A, Kumari A (2023) A detailed analysis of codon usages bias and influencing factors in the nucleocapsid gene of Nipah virus. The Microbe. https://doi.org/10.1016/j.microb.2023.100014. (PMID: 10.1016/j.microb.2023.100014)
Cheeran K, Suresh KP, Jacob SS et al (2024) Analysis of codon usage bias of six genes of replicase/coat protein of tobacco mosaic virus. Indian J Agric Res 58(4):720–726. https://doi.org/10.18805/IJARe.A-6107. (PMID: 10.18805/IJARe.A-6107)
Chen F, Yang JR (2022) Distinct codon usage bias evolutionary patterns between weakly and strongly virulent respiratory viruses. iScience. https://doi.org/10.1016/j.isci.2021.103682. (PMID: 10.1016/j.isci.2021.103682367132639860494)
Chen Z, Boon SS, Wang MH et al (2021) Genomic and evolutionary comparison between SARS-CoV-2 and other human coronaviruses. J Virol Methods. https://doi.org/10.1016/j.jviromet.2020.114032. (PMID: 10.1016/j.jviromet.2020.114032349330458684097)
Chen L, Jiang W, Wu W et al (2023a) Insights into the epidemiology, phylodynamics, and evolutionary changes of lineage GI-7 infectious bronchitis virus. Transbound Emerg Dis. https://doi.org/10.1155/2023/9520616. (PMID: 10.1155/2023/95206164030378612017077)
Chen R-X, Gong H-Y, Wang X et al (2023b) Zoonotic Hantaviridae with global public health significance. Viruses 15:1705. https://doi.org/10.3390/v15081705. (PMID: 10.3390/v150817053763204710459939)
Cho M, Min X, Son HS (2022) Analysis of evolutionary and genetic patterns in structural genes of primate lentiviruses. Genes Genomics. https://doi.org/10.1007/s13258-022-01257-6. (PMID: 10.1007/s13258-022-01257-6364343909684238)
Chupradit K, Sornsuwan K, Saiprayong K et al (2022) Validation of promoters and codon optimization on CRISPR/Cas9-engineered jurkat cells stably expressing αRep4E3 for Interfering with HIV-1 replication. Int J Mol Sci 23:15049. https://doi.org/10.3390/ijms232315049. (PMID: 10.3390/ijms232315049364993769738563)
Correia S, Bridges R, Wegner F et al (2018) Sequence variation of Epstein-Barr virus: viral types, geography, codon usage, and diseases. J Virol. https://doi.org/10.1128/JVI.01132-18. (PMID: 10.1128/JVI.01132-18301115706206488)
Côrtes N, Lira A, Prates-Syed W et al (2023) Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol. https://doi.org/10.3389/fimmu.2023.1281667. (PMID: 10.3389/fimmu.2023.12816673819694510775689)
Crespo-Bellido A, Duffy S (2022) Strand-specific patterns of codon usage bias across cressdnaviricota. Front Virol. https://doi.org/10.3389/fviro.2022.899608. (PMID: 10.3389/fviro.2022.899608)
Dahal U, Bansal A (2024) Unravelling prokaryotic codon usage: insights from phylogeny, influencing factors and pathogenicity. Curr Genomics. https://doi.org/10.2174/0113892029325491240919151045. (PMID: 10.2174/01138920293254912409191510454043344312105230)
Dahal U, Bansal A, Chitara D (2024) Decoding multidrug resistance: genetic architecture and codon usage patterns in ESKAPE pathogens. Curr Pharmacogenomics Person Med 21:179–198. https://doi.org/10.2174/0118756921344687241015063919. (PMID: 10.2174/0118756921344687241015063919)
Deb B, Uddin A, Chakraborty S (2021a) Genome-wide analysis of codon usage pattern in herpesviruses and its relation to evolution. Virus Res. https://doi.org/10.1016/j.virusres.2020.198248. (PMID: 10.1016/j.virusres.2020.19824833253719)
Deb B, Uddin A, Chakraborty S (2021b) Analysis of codon usage of Horseshoe Bat Hepatitis B virus and its host. Virology. https://doi.org/10.1016/j.virol.2021.05.008. (PMID: 10.1016/j.virol.2021.05.00834171764)
Deng Z, Wang J, Zhang W et al (2021) The insights of genomic synteny and codon usage preference on genera demarcation of Iridoviridae family. Front Microbiol. https://doi.org/10.3389/fmicb.2021.657887. (PMID: 10.3389/fmicb.2021.657887351979468762578)
Krishna G, Sreedevi S, Thrimothi D (2024) Dengue virus infection: etiology, epidemiology, pathogenesis, diagnosis, and prevention.
Dewi KS, Chairunnisa S, Swasthikawati S et al (2023) Production of codon-optimized Human papillomavirus type 52 L1 virus-like particles in Pichia pastoris BG10 expression system. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2022.2048262. (PMID: 10.1080/10826068.2022.204826235792906)
Di Gennaro F, Pizzol D, Marotta C et al (2020) Coronavirus diseases (COVID-19) current status and future perspectives: a narrative review. Int J Environ Res Public Health 17:2690. https://doi.org/10.3390/ijerph17082690.
Dimonte S, Fabeni L, Pellegrino M, Aquaro S (2021) Specific synonymous mutations tightly correlate with HIV-1 co-receptor usage and differentially affect the secondary structure of HIV-1 Env RNA. Acta Virol. https://doi.org/10.4149/av_2021_211. (PMID: 10.4149/av_2021_21134130468)
Dolatyabi S, Peighambari SM, Razmyar J (2022) Molecular detection and analysis of beak and feather disease viruses in Iran. Front Vet Sci. https://doi.org/10.3389/fvets.2022.1053886. (PMID: 10.3389/fvets.2022.1053886365323329751380)
Domingo E, García-Crespo C, Lobo-Vega R, Perales C (2021) Mutation rates, mutation frequencies, and proofreading-repair activities in RNA virus genetics. Viruses 13:1882. https://doi.org/10.3390/v13091882. (PMID: 10.3390/v13091882345784638473064)
Dong J, Dong Z, Feng P et al (2023) Influenza virus carrying a codon-reprogrammed neuraminidase gene as a strategy for live attenuated vaccine. Vaccines. https://doi.org/10.3390/vaccines11020391. (PMID: 10.3390/vaccines110203913825085610820899)
Ebenig A, Lange MV, Mühlebach MD (2022) Versatility of live-attenuated measles viruses as platform technology for recombinant vaccines. NPJ Vaccines 7:119. https://doi.org/10.1038/s41541-022-00543-4. (PMID: 10.1038/s41541-022-00543-4362437439568972)
Fang C-Y, Liu C-C (2022) Novel strategies for the development of hand, foot, and mouth disease vaccines and antiviral therapies. Expert Opin Drug Discov 17:27–39. https://doi.org/10.1080/17460441.2021.1965987. (PMID: 10.1080/17460441.2021.196598734382876)
Feiss M, Young R, Ramsey J et al (2022) Hybrid vigor: importance of hybrid λ phages in early insights in molecular biology. Microbiol Mol Biol Rev. https://doi.org/10.1128/mmbr.00124-21. (PMID: 10.1128/mmbr.00124-21361657809799177)
Franzo G, Tucciarone CM, Legnardi M, Cecchinato M (2021) Effect of genome composition and codon bias on infectious bronchitis virus evolution and adaptation to target tissues. BMC Genomics 22:244. https://doi.org/10.1186/s12864-021-07559-5. (PMID: 10.1186/s12864-021-07559-5338274298025453)
Fukunishi M, Sasai S, Tojo M, Mochizuki T (2021) Novel fusari- and toti-like viruses, with probable different origins, in the plant pathogenic oomycete Globisporangium ultimum. Viruses. https://doi.org/10.3390/v13101931. (PMID: 10.3390/v13101931346963618538416)
Funk M, de Bruin ACM, Spronken MI et al (2022) In silico analyses of the role of codon usage at the hemagglutinin cleavage site in highly pathogenic avian influenza genesis. Viruses. https://doi.org/10.3390/v14071352. (PMID: 10.3390/v14071352365607609788325)
Gaunt ER, Digard P (2022) Compositional biases in RNA viruses: causes, consequences and applications. Wires RNA. https://doi.org/10.1002/wrna.1679. (PMID: 10.1002/wrna.167934155814)
Gebre MS, Brito LA, Tostanoski LH et al (2021) Novel approaches for vaccine development. Cell 184:1589–1603. https://doi.org/10.1016/j.cell.2021.02.030. (PMID: 10.1016/j.cell.2021.02.030337404548049514)
Ghorbani A (2024) Genetic analysis of tomato brown rugose fruit virus reveals evolutionary adaptation and codon usage bias patterns. Sci Rep 14:21281. https://doi.org/10.1038/s41598-024-72298-y. (PMID: 10.1038/s41598-024-72298-y3926158211390899)
Giakountis A, Stylianidou Z, Zaka A et al (2023) Development of toehold switches as a novel ribodiagnostic method for West Nile Virus. Genes (Basel) 14:237. https://doi.org/10.3390/genes14010237. (PMID: 10.3390/genes14010237366729779859090)
Giménez-Roig J, Núñez-Manchón E, Alemany R et al (2021) Codon usage and adenovirus fitness: implications for vaccine development. Front Microbiol. https://doi.org/10.3389/fmicb.2021.633946. (PMID: 10.3389/fmicb.2021.633946336432667902882)
Glasgow HL, Zhu H, Xie H et al (2023) Genotypic testing improves detection of antiviral resistance in human herpes simplex virus. J Clin Virol 167:105554. https://doi.org/10.1016/j.jcv.2023.105554. (PMID: 10.1016/j.jcv.2023.10555437586184)
Greseth MD, Traktman P (2022) The life cycle of the Vaccinia virus genome. Annu Rev Virol 9:239–259. https://doi.org/10.1146/annurev-virology-091919-104752. (PMID: 10.1146/annurev-virology-091919-10475235584888)
Gupta A, Rudra A, Reed K et al (2024) Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 23:914–938. https://doi.org/10.1038/s41573-024-01041-z. (PMID: 10.1038/s41573-024-01041-z39433939)
Gurjar P, Khan AA, Alanazi AM et al (2024) Molecular dissection of herpes simplex virus type 1 to elucidate molecular mechanisms behind latency and comparison of its codon usage patterns with genes modulated during Alzheimer’s disease as a part of host-pathogen interaction. J Alzheimers Dis. https://doi.org/10.3233/JAD-231083. (PMID: 10.3233/JAD-23108338728191)
Hagag NM, Yehia N, El-Husseiny MH et al (2022) Molecular epidemiology and evolutionary analysis of avian influenza A(H5) viruses circulating in Egypt, 2019–2021. Viruses 14:1758. https://doi.org/10.3390/v14081758. (PMID: 10.3390/v14081758360163799415572)
Han L, Song S, Feng H et al (2023) A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: lessons from the past, strategies for the future. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2023.125514. (PMID: 10.1016/j.ijbiomac.2023.12551438287569)
Hao R, Ma K, Ru Y et al (2021) Amber codon is genetically unstable in generation of premature termination codon (PTC)-harbouring foot-and-mouth disease virus (FMDV) via genetic code expansion. RNA Biol 18:2330–2341. https://doi.org/10.1080/15476286.2021.1907055. (PMID: 10.1080/15476286.2021.1907055338493918632096)
Harding S, Sewgobind S, Johnson N (2023) JMM Profile: Sindbis virus, a cause of febrile illness and arthralgia. J Med Microbiol. https://doi.org/10.1099/jmm.0.001674. (PMID: 10.1099/jmm.0.00167436943350)
He Z, Qin L, Xu X, Ding S (2022) Evolution and host adaptability of plant RNA viruses: research insights on compositional biases. Comput Struct Biotechnol J 20:. (PMID: 10.1016/j.csbj.2022.05.021364675839706539)
Hernaez B, Alcamí A (2024) Poxvirus immune evasion. Annu Rev Immunol 42:551–584. https://doi.org/10.1146/annurev-immunol-090222-110227. (PMID: 10.1146/annurev-immunol-090222-11022738941604)
Hernandez-Alias X, Benisty H, Schaefer MH, Serrano L (2021) Translational adaptation of human viruses to the tissues they infect. Cell Rep. https://doi.org/10.1016/j.celrep.2021.108872. (PMID: 10.1016/j.celrep.2021.108872337305727962955)
Hiebert J, Zubach V, Schulz H, Severini A (2024) Genomic tools for post-elimination measles molecular epidemiology using Canadian surveillance data from 2018–2020. Front Microbiol. https://doi.org/10.3389/fmicb.2024.1475144. (PMID: 10.3389/fmicb.2024.14751443962920811611582)
Hossain A, Alam KMM, Akter S et al (2024) A comprehensive and single-use foot-and-mouth disease sero-surveillance prototype employing rationally designed multiple viral antigens. Sci Rep 14:25236. https://doi.org/10.1038/s41598-024-76669-3. (PMID: 10.1038/s41598-024-76669-33944868011502911)
Hoxie I, Dennehy JJ (2021) Rotavirus a genome segments show distinct segregation and codon usage patterns. Viruses 13:doi: 10.3390/v13081460. (PMID: 10.3390/v13081460)
Huang W, Guo Y, Li N et al (2021) Codon usage analysis of zoonotic coronaviruses reveals lower adaptation to humans by SARS-CoV-2. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2021.104736. (PMID: 10.1016/j.meegid.2021.104736348483558626897)
Huang S, Zhang C, Li J et al (2022) Designing a multi-epitope vaccine against coxsackievirus B based on immunoinformatics approaches. Front Immunol. https://doi.org/10.3389/fimmu.2022.933594. (PMID: 10.3389/fimmu.2022.933594369364759835811)
Hussain S, Rasool ST, Pottathil S (2021) The evolution of severe acute respiratory syndrome coronavirus-2 during pandemic and adaptation to the host. J Mol Evol. https://doi.org/10.1007/s00239-021-10008-2. (PMID: 10.1007/s00239-021-10008-2339933728123100)
Tirkey R, Soniya, Hasija Y (2023) In-silico approach to DNA codon optimization of Zaire Ebola Virus Genes for Vaccine Development. In: 2023 IEEE 8th International Conference for Convergence in Technology, I2CT 2023.
Jaan S, Zaman A, Ahmed S et al (2022) mRNA vaccine designing using Chikungunya virus E glycoprotein through immunoinformatics-guided approaches. Vaccines (Basel) 10:1476. https://doi.org/10.3390/vaccines10091476. (PMID: 10.3390/vaccines1009147636146554)
Jiang L, Zhang Q, Xiao S, Si F (2022) Deep decoding of codon usage strategies and host adaption preferences of soybean mosaic virus. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.09.179. (PMID: 10.1016/j.ijbiomac.2022.09.179365928499749393)
Jiang Y, Jiang B, Wang Z et al (2024) Nucleic acid armor: fortifying RNA therapeutics through delivery and targeting innovations for immunotherapy. Int J Mol Sci 25:8888. https://doi.org/10.3390/ijms25168888. (PMID: 10.3390/ijms251688883920157411354913)
Jing S, Jie W, Yongping M et al (2023) Genealogical diversity of endogenous retrovirus in the jawless fish genome. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.2306.06028. (PMID: 10.4014/jmb.2306.060283758308210699275)
Jitobaom K, Sirihongthong T, Boonarkart C et al (2023) Human Schlafen 11 inhibits influenza A virus production. Virus Res. https://doi.org/10.1016/j.virusres.2023.199162. (PMID: 10.1016/j.virusres.2023.1991623735658210410578)
John G, Sahajpal NS, Mondal AK et al (2021) Next-generation sequencing (NGS) in COVID-19: a tool for SARS-CoV-2 diagnosis, monitoring new strains and phylodynamic modeling in molecular epidemiology. Curr Issues Mol Biol 43:845–867. https://doi.org/10.3390/cimb43020061. (PMID: 10.3390/cimb43020061344495458929009)
Jordan-Paiz A, Franco S, Martínez MA (2021) Impact of synonymous genome recoding on the HIV life cycle. Front Microbiol. https://doi.org/10.3389/fmicb.2021.606087. (PMID: 10.3389/fmicb.2021.606087337960848007914)
Jungfleisch J, Böttcher R, Talló-Parra M et al (2022) Chikv infection reprograms codon optimality to favor viral RNA translation by altering the tRNA epitranscriptome. Nat Commun. https://doi.org/10.1038/s41467-022-31835-x. (PMID: 10.1038/s41467-022-31835-x359534689366759)
Kaleem S, Bansal A (2024) Analysis of preferred codon usage in the ZIKA virus genome and their implications for genome evolution and vaccine design. Indian J Microbiol. https://doi.org/10.1007/s12088-024-01398-0. (PMID: 10.1007/s12088-024-01398-0)
Kanai Y, Onishi M, Yoshida Y et al (2023) Genetic engineering strategy for generating a stable dsRNA virus vector using a virus-like codon-modified transgene. J Virol. https://doi.org/10.1128/jvi.00492-23. (PMID: 10.1128/jvi.00492-233773278410617491)
Kanduc D (2022) The role of codon usage, tRNA availability, and cell proliferation in EBV latency and (re)activation. Glob Med Genet. https://doi.org/10.1055/s-0042-1751301. (PMID: 10.1055/s-0042-1751301361182649477563)
Kang M, Wang L-F, Sun B-W et al (2024) Zoonotic infections by avian influenza virus: changing global epidemiology, investigation, and control. Lancet Infect Dis 24:e522–e531. https://doi.org/10.1016/S1473-3099(24)00234-2. (PMID: 10.1016/S1473-3099(24)00234-238878787)
Kaynarcalidan O, Moreno Mascaraque S, Drexler I (2021) Vaccinia virus: from crude smallpox vaccines to elaborate viral vector vaccine design. Biomedicines 9:1780. https://doi.org/10.3390/biomedicines9121780. (PMID: 10.3390/biomedicines9121780349445968698642)
Khan N, Bhat R, Jain V et al (2021) Epidemiology and molecular characterization of chikungunya virus from human cases in North India, 2016. Microbiol Immunol 65:290–301. https://doi.org/10.1111/1348-0421.12869. (PMID: 10.1111/1348-0421.1286933347650)
Khan NT, Zinnia MA, Islam ABMMdK (2023) Modeling mRNA-based vaccine YFV.E1988 against yellow fever virus E-protein using immuno-informatics and reverse vaccinology approach. J Biomol Struct Dyn 41:1617–1638. https://doi.org/10.1080/07391102.2021.2024253. (PMID: 10.1080/07391102.2021.202425334994279)
Khandia R, Khan AA, Karuvantevida N et al (2023a) Insights into synonymous codon usage bias in Hepatitis C virus and its adaptation to hosts. Pathogens 12:doi: 10.3390/pathogens12020325. https://doi.org/10.3390/pathogens12020325. (PMID: 10.3390/pathogens12020325)
Khandia R, Khan AA, Karuvantevida N et al (2023b) Insights into synonymous codon usage bias in Hepatitis C virus and its adaptation to hosts. Pathogens 12:325. https://doi.org/10.3390/pathogens12020325. (PMID: 10.3390/pathogens12020325368395979961758)
Khattak S, Rauf MA, Zaman Q et al (2021) Genome-wide analysis of codon usage patterns of SARS-CoV-2 virus reveals global heterogeneity of COVID-19. Biomolecules. https://doi.org/10.3390/biom11060912. (PMID: 10.3390/biom11060912348276918615790)
Khongwichit S, Chuchaona W, Vongpunsawad S, Poovorawan Y (2023) Molecular epidemiology, clinical analysis, and genetic characterization of Zika virus infections in Thailand (2020–2023). Sci Rep 13:21030. https://doi.org/10.1038/s41598-023-48508-4. (PMID: 10.1038/s41598-023-48508-43803071510687007)
Kiflu AB (2024) The immune escape strategy of rabies virus and its pathogenicity mechanisms. Viruses 16:1774. https://doi.org/10.3390/v16111774. (PMID: 10.3390/v161117743959988811598914)
Kim J, Lal A, Kil EJ et al (2021) Adaptation and codon-usage preference of apple and pear-infecting apple stem grooving viruses. Microorganisms. https://doi.org/10.3390/microorganisms9061111. (PMID: 10.3390/microorganisms9061111350565258778969)
Kobayashi-Ishihara M, Frazão Smutná K, Alonso FE et al (2023) Schlafen 12 restricts HIV-1 latency reversal by a codon-usage dependent post-transcriptional block in CD4+ T cells. Commun Biol 6:487. https://doi.org/10.1038/s42003-023-04841-y. (PMID: 10.1038/s42003-023-04841-y3716509910172343)
Kogay R, Zhaxybayeva O (2022) Selection for translational efficiency in genes associated with Alphaproteobacterial gene transfer agents. mSystems. https://doi.org/10.1128/msystems.00892-22. (PMID: 10.1128/msystems.00892-22363740479765227)
Konopka-Anstadt JL, Campagnoli R, Vincent A et al (2020) Development of a new oral poliovirus vaccine for the eradication end game using codon deoptimization. NPJ Vaccines 5:26. https://doi.org/10.1038/s41541-020-0176-7. (PMID: 10.1038/s41541-020-0176-7322189987083942)
Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in escherichia coli. Science 324:255–258. https://doi.org/10.1126/science.1170160.
Kumar N, Kaushik R, Tennakoon C et al (2021) Insights into the evolutionary forces that shape the codon usage in the viral genome segments encoding intrinsically disordered protein regions. Brief Bioinform. https://doi.org/10.1093/bib/bbab145. (PMID: 10.1093/bib/bbab14534415295)
Kumar A, Tushir S, Devasurmutt Y et al (2024) Identification of clade-defining single nucleotide polymorphisms for improved rabies virus surveillance. New Microbes New Infect 62:101511. https://doi.org/10.1016/j.nmni.2024.101511. (PMID: 10.1016/j.nmni.2024.1015113951285311542045)
Kustin T, Stern A (2021) Biased mutation and selection in RNA viruses. Mol Biol Evol. https://doi.org/10.1093/molbev/msaa247. (PMID: 10.1093/molbev/msaa24732986832)
Lai CJ, Kim D, Kang S et al (2023) Viral codon optimization on SARS-CoV-2 spike boosts immunity in the development of COVID-19 mRNA vaccines. J Med Virol. https://doi.org/10.1002/jmv.29183. (PMID: 10.1002/jmv.291833810821110107526)
Lampi M, Gregorova P, Qasim MS et al (2023) Bacteriophage infection of the marine bacterium Shewanella glacialimarina induces dynamic changes in tRNA modifications. Microorganisms. https://doi.org/10.3390/microorganisms11020355. (PMID: 10.3390/microorganisms11020355368383209963407)
Lebeda D, Fierenz A, Werfel L et al (2024) Systematic and quantitative analysis of stop codon readthrough in Rett syndrome nonsense mutations. J Mol Med 102:641–653. https://doi.org/10.1007/s00109-024-02436-6. (PMID: 10.1007/s00109-024-02436-638430393)
Lee MF, Voon GZ, Lim HX et al (2022) Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.1004608. (PMID: 10.3389/fcimb.2022.1004608369682439812644)
Li B, Wu H, Miao Z, Lu Y (2022a) Using codon usage analysis to speculate potential animal hosts of hepatitis E virus: an exploratory study. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2022.105284. (PMID: 10.1016/j.meegid.2022.105284365864609707050)
Li G, Shi L, Zhang L, Xu B (2022b) Componential usage patterns in dengue 4 viruses reveal their better evolutionary adaptation to humans. Front Microbiol. https://doi.org/10.3389/fmicb.2022.935678. (PMID: 10.3389/fmicb.2022.935678370083029838197)
Li X, Song Y, Wang J, Zhang X, He Y, Wei W (2022c) Cross-species transmission, evolution and zoonotic potential of coronaviruses. Front Cell Infect Microbiol 12:1081370. https://doi.org/10.3389/fcimb.2022.1081370. (PMID: 10.3389/fcimb.2022.108137036683695)
Li G, Chen X, Li X et al (2023) Analyzing the evolution and host adaptation of the Rabies virus from the perspective of codon usage bias. Transbound Emerg Dis. https://doi.org/10.1155/2023/4667253. (PMID: 10.1155/2023/46672534030383212017212)
Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16:321–332. https://doi.org/10.1038/nrg3920.
de Lima Cavalcanti TYV, Pereira MR, de Paula SO, de Franca RFO (2022) A review on chikungunya virus epidemiology, pathogenesis and current vaccine development. Viruses 14:969. https://doi.org/10.3390/v14050969. (PMID: 10.3390/v14050969356327099147731)
Lin LCW, Croft SN, Croft NP et al (2021) Direct priming of CD8 + T cells persists in the face of cowpox virus inhibitors of antigen presentation. J Virol. https://doi.org/10.1128/JVI.00186-21. (PMID: 10.1128/JVI.00186-21349106128549516)
Lin Q, Zheng Y, Yin Y et al (2023) Adaption of tobacco rattle virus to its solanaceous hosts is related to the codon usage bias of the hosts and that of the viral 16 K gene. Eur J Plant Pathol. https://doi.org/10.1007/s10658-023-02641-y. (PMID: 10.1007/s10658-023-02641-y)
Liu Y (2023) Attenuation and degeneration of SARS-CoV-2 despite adaptive evolution. Cureus. https://doi.org/10.7759/cureus.33316. (PMID: 10.7759/cureus.333163828349710818093)
Liu W, Li J, Du H, Ou Z (2021) Mutation profiles, glycosylation site distribution and codon usage bias of human papillomavirus type 16. Viruses. https://doi.org/10.3390/v13071281. (PMID: 10.3390/v13071281350622628780094)
Lopes EN, Fonseca V, Frias D et al (2021) Betacoronaviruses genome analysis reveals evolution toward specific codons usage: implications for SARS-CoV-2 mitigation strategies. J Med Virol. https://doi.org/10.1002/jmv.27056. (PMID: 10.1002/jmv.27056339343878242727)
Lorenzo MM, Nogales A, Chiem K et al (2022) Vaccinia virus attenuation by codon deoptimization of the A24R gene for vaccine development. Microbiol Spectr. https://doi.org/10.1128/spectrum.00272-22. (PMID: 10.1128/spectrum.00272-22365199439927164)
Maldonado LL, Bertelli AM, Kamenetzky L (2021) Molecular features similarities between SARS-CoV-2, SARS, MERS and key human genes could favour the viral infections and trigger collateral effects. Sci Rep. https://doi.org/10.1038/s41598-021-83595-1. (PMID: 10.1038/s41598-021-83595-1349211518683470)
Malvy D, Baize S (2024) Ebola and Marburg viruses. Molecular Medical Microbiology. Elsevier, Amsterdam, pp 2281–2308. (PMID: 10.1016/B978-0-12-818619-0.00135-0)
Markowitz LE, Schiller JT (2021) Human papillomavirus vaccines. J Infect Dis 224:S367–S378. https://doi.org/10.1093/infdis/jiaa621. (PMID: 10.1093/infdis/jiaa621345901418577198)
Michie A, Ernst T, Pyke AT et al (2023) Genomic analysis of Sindbis virus reveals uncharacterized diversity within the Australasian region, and support for revised SINV taxonomy. Viruses 16:7. https://doi.org/10.3390/v16010007. (PMID: 10.3390/v160100073827594210820390)
Mn M, Putta K, Suresh H et al (2023) Research article a new informatics framework for evaluating the codon usage metrics, evolutionary models and phylogeographic reconstruction of Tomato yellow leaf curl virus (TYLCV) in different regions of Asian countries. Int J Health Allied Sci. https://doi.org/10.55691/2278-344x.1022. (PMID: 10.55691/2278-344x.1022)
Pereira-Gómez M, Cristina J (2021) Molecular evolution and codon usage bias of Zika virus. In: Zika Virus Biology, Transmission, and Pathways: Volume 1: The Neuroscience of Zika Virus.
Molteni C, Forni D, Cagliani R et al (2023) Evolution and diversity of nucleotide and dinucleotide composition in poxviruses. J General Virol. https://doi.org/10.1099/jgv.0.001897. (PMID: 10.1099/jgv.0.001897)
Mordstein C, Cano L, Morales AC et al (2021) Transcription, mRNA export, and immune evasion shape the codon usage of viruses. Genome Biol Evol. https://doi.org/10.1093/gbe/evab106. (PMID: 10.1093/gbe/evab106344276408504154)
Mueller S, Papamichail D, Coleman JR, Skiena S, Wimmer E (2010) Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol 84:3564–3574. https://doi.org/10.1128/JVI.02338-09. (PMID: 10.1128/JVI.02338-09)
Mukhtar M, Wajeeha AW, Zaidi N, Zaidi N (2022) Engineering modified mRNA-based vaccine against dengue virus using computational and reverse vaccinology approaches. Int J Mol Sci 23:13911. https://doi.org/10.3390/ijms232213911. (PMID: 10.3390/ijms232213911364303879698390)
Muñoz-Alía MÁ, Nace RA, Balakrishnan B et al (2024) Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. Mbio. https://doi.org/10.1128/mbio.02928-23. (PMID: 10.1128/mbio.02928-233819372910865805)
Nabakooza G, Galiwango R, Frost SDW et al (2022) Molecular epidemiology and evolutionary dynamics of human influenza type-A viruses in Africa: a systematic review. Microorganisms 10:900. https://doi.org/10.3390/microorganisms10050900. (PMID: 10.3390/microorganisms10050900356303449145646)
Nambou K, Anakpa M, Tong YS (2022) Human genes with codon usage bias similar to that of the nonstructural protein 1 gene of influenza A viruses are conjointly involved in the infectious pathogenesis of influenza A viruses. Genetica. https://doi.org/10.1007/s10709-022-00155-9. (PMID: 10.1007/s10709-022-00155-9353966278992787)
Ndemela LM, Ottoman OM, Chitemo HD et al (2024) Epidemiological distribution of high-risk human papillomavirus genotypes and associated factors among patients with esophageal carcinoma at Bugando medical center in Mwanza, Tanzania. BMC Cancer 24:932. https://doi.org/10.1186/s12885-024-12657-0. (PMID: 10.1186/s12885-024-12657-03909061811293061)
Nkolola JP, Barouch DH (2024) Prophylactic HIV-1 vaccine trials: past, present, and future. Lancet HIV 11:e117–e124. https://doi.org/10.1016/S2352-3018(23)00264-3. (PMID: 10.1016/S2352-3018(23)00264-338141639)
Nnaji ND, Onyeaka H, Reuben RC et al (2021) The deuce-ace of Lassa fever, Ebola virus disease and COVID-19 simultaneous infections and epidemics in West Africa: clinical and public health implications. Trop Med Health 49:102. https://doi.org/10.1186/s41182-021-00390-4. (PMID: 10.1186/s41182-021-00390-4349658918716304)
Nogales A, Baker SF, Martínez-Sobrido L (2014) Reverse genetics approaches for the development of influenza vaccines. Int J Mol Sci 15:10805–10831. https://doi.org/10.3390/ijms150610805. (PMID: 10.3390/ijms150610805)
Noor R (2021) Developmental status of the potential vaccines for the mitigation of the COVID-19 pandemic and a focus on the effectiveness of the Pfizer-BioNTech and Moderna mRNA vaccines. Curr Clin Microbiol Rep 8:178–185. https://doi.org/10.1007/s40588-021-00162-y. (PMID: 10.1007/s40588-021-00162-y336863657927780)
Oladoye MJ (2021) Monkeypox: a neglected viral zoonotic disease. Eur J Med Educ Technol 14:em2108. https://doi.org/10.30935/ejmets/10911. (PMID: 10.30935/ejmets/10911)
Ong E, Wong MU, Huffman A, He Y (2021) COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front Immunol 11:1581. https://doi.org/10.3389/fimmu.2020.01581. (PMID: 10.3389/fimmu.2020.01581)
Li D, Wang X, Li G, et al (2024) Optimizing rabies mRNA vaccine efficacy: role of RABV-G structural domains and heterologous prime-boost immunization strategies.
Owliaee I, Khaledian M, Shojaeian A et al (2025) Antimicrobial peptides against arboviruses: mechanisms, challenges, and future directions. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-024-10430-0. (PMID: 10.1007/s12602-024-10430-039776036)
Park C, Walsh D (2022) Ribosomes in poxvirus infection. Curr Opin Virol 56:101256. https://doi.org/10.1016/j.coviro.2022.101256. (PMID: 10.1016/j.coviro.2022.1012563627018310106528)
Patton JT, Desselberger U (2024) Rotaviruses and rotavirus vaccines: special issue editorial. Viruses. https://doi.org/10.3390/v16111665. (PMID: 10.3390/v161116653959978011598851)
Pattyn J, Hendrickx G, Vorsters A, Van Damme P (2021) Hepatitis B vaccines. J Infect Dis 224:S343–S351. https://doi.org/10.1093/infdis/jiaa668. (PMID: 10.1093/infdis/jiaa668345901388482019)
Pavesi A, Romerio F (2024) Creation of the HIV-1 antisense gene asp coincided with the emergence of the pandemic group M and is associated with faster disease progression. Microbiol Spectr. https://doi.org/10.1128/spectrum.03802-23. (PMID: 10.1128/spectrum.03802-233823094010846101)
Pereira-Gómez M, Carrau L, Fajardo Á et al (2021) Altering compositional properties of viral genomes to design live-attenuated vaccines. Front Microbiol. https://doi.org/10.3389/fmicb.2021.676582. (PMID: 10.3389/fmicb.2021.676582342766088278477)
Pharande RR, Majee SB, Gaikwad SS et al (2021) Evolutionary analysis of rabies virus using the partial Nucleoprotein and Glycoprotein gene in Mumbai region of India. J General Virol. https://doi.org/10.1099/jgv.0.001521. (PMID: 10.1099/jgv.0.001521)
Pintó RM, Burns CC, Moratorio G (2021a) Editorial: codon usage and dinucleotide composition of virus genomes: from the virus-host interaction to the development of vaccines. Front Microbiol. https://doi.org/10.3389/fmicb.2021.791750. (PMID: 10.3389/fmicb.2021.791750349170658671033)
Pintó RM, Pérez-Rodríguez FJ, Costafreda MI et al (2021b) Pathogenicity and virulence of hepatitis A virus. Virulence. https://doi.org/10.1080/21505594.2021.1910442. (PMID: 10.1080/21505594.2021.1910442338434648043188)
Pouresmaeil M, Azizi-Dargahlou S (2024) Investigation of CaMV-host co-evolution through synonymous codon pattern. J Basic Microbiol. https://doi.org/10.1002/jobm.202300664. (PMID: 10.1002/jobm.20230066438436477)
Pourrahim R, Farzadfar S (2022) Insights into factors affecting synonymous codon usage in apple mosaic virus and its host adaptability. J Plant Biotechnol 49:doi: 10.5010/JPB.2022.49.1.046. (PMID: 10.5010/JPB.2022.49.1.046)
Pu F, Wang R, Yang X et al (2023) Nucleotide and codon usage biases involved in the evolution of African swine fever virus: a comparative genomics analysis. J Basic Microbiol. https://doi.org/10.1002/jobm.202200624. (PMID: 10.1002/jobm.20220062436782108)
Rahman SU, Abdullah M, Khan AW et al (2022) A detailed comparative analysis of codon usage bias in Alongshan virus. Virus Res 308:198646. https://doi.org/10.1016/j.virusres.2021.198646. (PMID: 10.1016/j.virusres.2021.19864634822954)
Raizada R (2021) Comparative analysis of codon usage of Dengue and Chikungunya viruses with human host and vector. Biosci Biotechnol Res Commun 14:2.47. https://doi.org/10.21786/bbrc/14.2.47. (PMID: 10.21786/bbrc/14.2.47)
Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16:276–277. https://doi.org/10.1016/S0168-9525(00)02024-2. (PMID: 10.1016/S0168-9525(00)02024-210827456)
Rice AM, Castillo Morales A, Ho AT et al (2021) Evidence for strong mutation bias toward, and selection against, U content in SARS-CoV-2: implications for vaccine design. Mol Biol Evol. https://doi.org/10.1093/molbev/msaa188. (PMID: 10.1093/molbev/msaa188345205508499992)
Rijkers GT, Weterings N, Obregon-Henao A et al (2021) Antigen presentation of mRNA-based and virus-vectored SARS-CoV-2 vaccines. Vaccines (Basel) 9:848. https://doi.org/10.3390/vaccines9080848. (PMID: 10.3390/vaccines908084834451973)
Sahoo S (2021) Analysis of the codon usage pattern in 2019-nCoV. Int J Comput Biol Drug des. https://doi.org/10.1504/IJCBDD.2021.118828. (PMID: 10.1504/IJCBDD.2021.118828)
dos Santos CR, dos Santos CGM, Couto-Lima D et al (2024) Evaluation of Yellow Fever Virus Infection in Aedes aegypti Mosquitoes from Pakistan with Distinct Knockdown Resistance Genotypes. InSects 16:33. https://doi.org/10.3390/insects16010033. (PMID: 10.3390/insects160100333985961411765701)
Shackelton LA, Parrish CR, Holmes EC (2006) Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol 62:551–563. https://doi.org/10.1007/s00239-005-0221-1. (PMID: 10.1007/s00239-005-0221-116557338)
Shaker B, Ahmad S, Lee J et al (2021) In silico methods and tools for drug discovery. Comput Biol Med 137:104851. https://doi.org/10.1016/j.compbiomed.2021.104851. (PMID: 10.1016/j.compbiomed.2021.10485134520990)
Sharp PM, Li WH (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38. https://doi.org/10.1007/BF02099948. (PMID: 10.1007/BF020999483104616)
Sharp PM, Li WH (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295. https://doi.org/10.1093/nar/15.3.1281. (PMID: 10.1093/nar/15.3.12813547335340524)
Shayeghpour A, Kianfar R, Hosseini P et al (2021) Hepatitis C virus DNA vaccines: a systematic review. Virol J 18:248. https://doi.org/10.1186/s12985-021-01716-8. (PMID: 10.1186/s12985-021-01716-8349032528667529)
Shin YC, Bischof GF, Lauer WA, Desrosiers RC (2015) Importance of codon usage for the temporal regulation of viral gene expression. Proc Natl Acad Sci U S A 112:14030–14035. https://doi.org/10.1073/pnas.1515387112. (PMID: 10.1073/pnas.1515387112265042414653223)
Si F, Song S, Yu R et al (2023) Coronavirus accessory protein ORF3 biology and its contribution to viral behavior and pathogenesis. iScience. https://doi.org/10.1016/j.isci.2023.106280. (PMID: 10.1016/j.isci.2023.1062803782249410562853)
Simón D, Cristina J, Musto H (2021) Nucleotide composition and codon usage across viruses and their respective hosts. Front Microbiol. https://doi.org/10.3389/fmicb.2021.646300. (PMID: 10.3389/fmicb.2021.646300349561178695880)
Simón D, Cristina J, Musto H (2022) An overview of dinucleotide and codon usage in all viruses. Arch Virol. https://doi.org/10.1007/s00705-022-05454-2. (PMID: 10.1007/s00705-022-05454-2358211488862410)
Singhal S, Kumar U, Pandey MK, Khandia R (2023) Biotechnological, agriculture, industrial, and biopharmaceutical research in bioinformatics. In: Bioinformatics and Computational Biology: Technological Advancements, Applications and Opportunities.
Smith CS, Underwood DJ, Gordon A et al (2024) Identification and epidemiological analysis of a putative novel hantavirus in Australian flying foxes. Virus Genes. https://doi.org/10.1007/s11262-024-02113-3. (PMID: 10.1007/s11262-024-02113-33939252911787259)
Soltan MA, Abdulsahib WK, Amer M et al (2022) Mining of Marburg virus proteome for designing an epitope-based vaccine. Front Immunol. https://doi.org/10.3389/fimmu.2022.907481. (PMID: 10.3389/fimmu.2022.907481365698429780532)
Strumillo ST, Kartavykh D, de Carvalho FF et al (2021) Host–virus interaction and viral evasion. Cell Biol Int 45:1124–1147. https://doi.org/10.1002/cbin.11565. (PMID: 10.1002/cbin.11565335335238014853)
Su YC, Huang PL, Do YY (2023) Genetic transformation and expression of hemagglutinin gene from avian influenza virus in carrot (Daucus carota). J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-023-00840-6. (PMID: 10.1007/s13562-023-00840-6)
Sun H, Harrington C, Gerloff N et al (2021a) Validation of a redesigned pan-poliovirus assay and real-time PCR platforms for the global poliovirus laboratory network. PLoS ONE 16:e0255795. https://doi.org/10.1371/journal.pone.0255795. (PMID: 10.1371/journal.pone.0255795343582688345876)
Sun S, Hu Y, Liu Y et al (2021b) Characteristics of amino acid and codon usage of Env genes in HIV-1 infected individuals with highly broad cross-neutralizing activity. Chin J Microbiol Immunol (China). https://doi.org/10.3760/cma.j.cn112309-20201204-00540. (PMID: 10.3760/cma.j.cn112309-20201204-00540)
Sun Q, Zeng J, Tang K et al (2023) Variation in synonymous evolutionary rates in the SARS-CoV-2 genome. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1136386. (PMID: 10.3389/fmicb.2023.11363863842021510765544)
Taghinezhad-S S, Mohseni AH, Bermúdez-Humarán LG, Casolaro V, Cortes-Perez NG, Keyvani H, Simal-Gandara J (2021) Probiotic-based vaccines may provide effective protection against COVID-19 acute respiratory disease. Vaccines 9:466. https://doi.org/10.3390/vaccines9050466. (PMID: 10.3390/vaccines9050466340664438148110)
Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120. (PMID: 10.1093/molbev/msab120338924918233496)
Tan X, Xie Y, Jiang C et al (2024) Codon usage bias of human papillomavirus type 33 and 58: a comprehensive analysis. J Basic Microbiol. https://doi.org/10.1002/jobm.202300636. (PMID: 10.1002/jobm.20230063639375950)
Tian H, Zhou S, Dong X, Li X, Zheng W, Xu D (2018) The impact of codon usage bias on the immune evasion of viruses and viral vaccine design. Front Immunol 9:2824. https://doi.org/10.3389/fimmu.2018.02824. (PMID: 10.3389/fimmu.2018.02824)
Vanmechelen B, Stroobants J, Chiu W et al (2022) Development and optimization of biologically contained Marburg virus for high-throughput antiviral screening. Antiviral Res 207:105426. https://doi.org/10.1016/j.antiviral.2022.105426. (PMID: 10.1016/j.antiviral.2022.10542636183903)
Vaz PK, Armat M, Hartley CA, Devlin JM (2023) Codon pair bias deoptimization of essential genes in infectious laryngotracheitis virus reduces protein expression. J General Virol. https://doi.org/10.1099/jgv.0.001836. (PMID: 10.1099/jgv.0.001836)
Victor MP, Das R, Ghos TC (2023) Revisiting SARS-CoV-2: Evolution, polymorphism and compatibility with human tRNA pool in a lineage over a month. Indian J Appl Microbiol. https://doi.org/10.46798/ijam.2023.v25i02.2. (PMID: 10.46798/ijam.2023.v25i02.2)
Volkening JD, Spatz SJ, Ponnuraj N et al (2023) Viral proteogenomic and expression profiling during productive replication of a skin-tropic herpesvirus in the natural host. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1011204. (PMID: 10.1371/journal.ppat.10112043728983310284419)
Wang Q, Lyu X, Cheng J et al (2022a) Codon usage provides insights into the adaptive evolution of mycoviruses in their associated fungi host. Int J Mol Sci. https://doi.org/10.3390/ijms23137441. (PMID: 10.3390/ijms23137441366141629821100)
Wang X, Sun J, Lu L et al (2022b) Evolutionary dynamics of codon usages for peste des petits ruminants virus. Front Vet Sci. https://doi.org/10.3389/fvets.2022.968034. (PMID: 10.3389/fvets.2022.968034372658029835091)
Wang F, Wang Z, Sun Y, An Z (2023a) Comparative analysis of codon usage in the genomes of SARS-CoV-2 and SARS virus. Chin J Med Phys. https://doi.org/10.3969/j.issn.1005-202X.2023.11.014. (PMID: 10.3969/j.issn.1005-202X.2023.11.014)
Wang H, Liu S, Lv Y, Wei W (2023b) Codon usage bias of Venezuelan equine encephalitis virus and its host adaption. Virus Res. https://doi.org/10.1016/j.virusres.2023.199081. (PMID: 10.1016/j.virusres.2023.1990813800822010730850)
Wang Y, Chi C, Zhang J et al (2024) Systematic analysis of the codon usage patterns of African swine fever virus genome coding sequences reveals its host adaptation phenotype. Microb Genom. https://doi.org/10.1099/mgen.0.001186. (PMID: 10.1099/mgen.0.0011863956508411897173)
Whitehouse ER, Mandra A, Bonwitt J et al (2023) Human rabies despite post-exposure prophylaxis: a systematic review of fatal breakthrough infections after zoonotic exposures. Lancet Infect Dis 23:e167–e174. https://doi.org/10.1016/S1473-3099(22)00641-7. (PMID: 10.1016/S1473-3099(22)00641-736535276)
Wong NA, Saier MH (2021) The SARS-coronavirus infection cycle: a survey of viral membrane proteins, their functional interactions and pathogenesis. Int J Mol Sci 22:1308. https://doi.org/10.3390/ijms22031308. (PMID: 10.3390/ijms22031308335256327865831)
Wong EH, Smith DK, Rabadan R et al (2010) Codon usage bias and the evolution of influenza A viruses. Codon usage biases of influenza virus. BMC Evol Biol 10:253. https://doi.org/10.1186/1471-2148-10-253. (PMID: 10.1186/1471-2148-10-253207232162933640)
Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29. https://doi.org/10.1016/0378-1119(90)90491-9. (PMID: 10.1016/0378-1119(90)90491-92110097)
Wu X, Shan K, Zan F et al (2023) Optimization and deoptimization of codons in SARS-CoV-2 and related implications for vaccine development. Adv Sci. https://doi.org/10.1002/advs.202205445. (PMID: 10.1002/advs.202205445)
Xia X (2018) DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol 35:1550–1552. https://doi.org/10.1093/molbev/msy073. (PMID: 10.1093/molbev/msy073296691075967572)
Xiran L, Hongyan S, Guixiang Q et al (2024) Preliminary investigation and analysis of nucleotide site variability of nine glycoproteins on varicella-zoster virus envelope, Jilin Province, China, 2010-March 2024. Sci Rep 14:22758. https://doi.org/10.1038/s41598-024-73072-w. (PMID: 10.1038/s41598-024-73072-w3935398111445264)
Yang JY, Fang W, Miranda-Sanchez F et al (2021) Degradation of host translational machinery drives tRNA acquisition in viruses. Cell Syst. https://doi.org/10.1016/j.cels.2021.05.019. (PMID: 10.1016/j.cels.2021.05.019347062668961722)
Yewdell JW, Urbanowski M, Bennink JR (2013) Vaccinia and influenza A viruses demonstrate virus-specific manipulation of tRNA pools during infection. Nucleic Acids Res 41(3):1914–1921. https://doi.org/10.1093/nar/gks986. (PMID: 10.1093/nar/gks98623254333)
Yimyaem M, Jitobaom K, Auewarakul P (2023) A small stretch of poor codon usage at the beginning of dengue virus open reading frame may act as a translational checkpoint. BMC Res Notes. https://doi.org/10.1186/s13104-023-06615-5. (PMID: 10.1186/s13104-023-06615-53805313910698908)
Yu C, Li J, Li Q et al (2022) Hepatitis B virus (HBV) codon adapts well to the gene expression profile of liver cancer: an evolutionary explanation for HBV’s oncogenic role. J Microbiol. https://doi.org/10.1007/s12275-022-2371-x. (PMID: 10.1007/s12275-022-2371-x362511209574796)
Yu D, Zhao ZY, Yang YL et al (2023) The origin and evolution of emerged swine acute diarrhea syndrome coronavirus with zoonotic potential. J Med Virol. https://doi.org/10.1002/jmv.28672. (PMID: 10.1002/jmv.286723807865810107992)
Zeng W, Yan Q, Du P et al (2023) Evolutionary dynamics and adaptive analysis of Seneca Valley virus. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2023.105488. (PMID: 10.1016/j.meegid.2023.10548837558190)
Zhang J, Wang M, Liu W et al (2011) Analysis of codon usage and nucleotide composition bias in polioviruses. Virol J 8:146. https://doi.org/10.1186/1743-422X-8-146. (PMID: 10.1186/1743-422X-8-146214500753079669)
Zhang Z, Dong L, Zhao C et al (2021a) Vaccinia virus-based vector against infectious diseases and tumors. Hum Vaccin Immunother 17:1578–1585. https://doi.org/10.1080/21645515.2020.1840887. (PMID: 10.1080/21645515.2020.1840887336065788115763)
Zhang Z, Guo F, Roy A et al (2021b) Evolutionary perspectives and adaptation dynamics of human seasonal influenza viruses from 2009 to 2019: an insight from codon usage. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2021.105067. (PMID: 10.1016/j.meegid.2021.105067349541048641433)
Zhang Z, Guo F, Roy A et al (2021c) Evolutionary perspectives and adaptation dynamics of human seasonal influenza viruses from 2009 to 2019: an insight from codon usage. Infect Genet Evol 96:105067. https://doi.org/10.1016/j.meegid.2021.105067. (PMID: 10.1016/j.meegid.2021.10506734487866)
Zhang H, Zhang D, Lu H et al (2022) Antiviral activity of mink interferon alpha expressed in the yeast Pichia pastoris. Front Vet Sci. https://doi.org/10.3389/fvets.2022.976347. (PMID: 10.3389/fvets.2022.976347372658029835091)
Zhao C, Zhou X, Xue C et al (2023) Knockdown resistance mutations distribution and characteristics of Aedes albopictus field populations within eleven dengue local epidemic provinces in China. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.981702. (PMID: 10.3389/fcimb.2022.9817023836215810761423)
Zhou C, Liang S, Li Y et al (2022) Characterization of HIV-1 molecular epidemiology and transmitted drug-resistance in newly diagnosed HIV-infected patients in Sichuan, China. BMC Infect Dis 22:602. https://doi.org/10.1186/s12879-022-07576-z. (PMID: 10.1186/s12879-022-07576-z357991019263063)
Zhou J, Wang X, Zhou Z, Wang S (2023a) Insights into the evolution and host adaptation of the monkeypox virus from a codon usage perspective: focus on the ongoing 2022 outbreak. Int J Mol Sci. https://doi.org/10.3390/ijms241411524. (PMID: 10.3390/ijms2414115243820368810779331)
Zhou J, Xing Y, Zhou Z, Wang S (2023b) A comprehensive analysis of Usutu virus (USUV) genomes revealed lineage-specific codon usage patterns and host adaptations. Front Microbiol. https://doi.org/10.3389/fmicb.2022.967999. (PMID: 10.3389/fmicb.2022.9679993835206110770849)
Zu Z, Lin H, Hu Y et al (2022) The genetic evolution and codon usage pattern of severe fever with thrombocytopenia syndrome virus. Infect Genet Evol. https://doi.org/10.1016/j.meegid.2022.105238. (PMID: 10.1016/j.meegid.2022.10523835144005)
Peden JF (1999) Analysis of codon usage. University of Nottingham, UK. Available from: http://codonw.sourceforge.net.
Contributed Indexing:
Keywords: Codon; Evolution; Vaccine; Viral codon usage; Zoonotic spillover
Substance Nomenclature:
0 (Codon)
Entry Date(s):
Date Created: 20250904 Date Completed: 20251101 Latest Revision: 20251101
Update Code:
20251101
DOI:
10.1007/s00239-025-10263-7
PMID:
40906273
Database:
MEDLINE

Weitere Informationen

Codon usage serves as a fundamental viral signature, influencing survival, adaptation, and pathogenicity. Viruses exhibit distinct codon usage patterns shaped by genome composition, host interactions, and evolutionary pressures. The differences between DNA and RNA viruses in codon usage reflect their replication strategies, host preferences, and genome constraints. Viral adaptation to host codon usage, genome size, and lifestyle further shapes translational efficiency and immune evasion mechanisms. Host tRNA abundance plays a crucial role in viral translation rates, while codon deoptimization is a strategy used by viruses to evade immune detection. Additionally, codon bias is linked to viral virulence, replication rates, and pathogenicity. Building on these concepts, this review synthesizes current knowledge on the interplay between virus-host translational interactions, codon bias-driven viral evolution, and their implications for pathogenesis, immune evasion, and epidemiology, while also outlining their practical applications in vaccine development, antiviral strategies, and viral diagnostics. We discuss current challenges in codon usage studies, including context-dependent variations and limited experimental validation, and propose future research directions that integrate computational and experimental approaches to deepen our understanding of viral codon bias and its role in evolution, host adaptation, and disease control.
(© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Declarations. Conflict of interest: The authors declare no conflict of interest regarding the publication of this paper. No financial or personal relationships with any organizations or individuals have influenced the content or conclusions of this manuscript.