Treffer: Chronically Stable, High-Resolution Micro-Electrocorticographic Brain-Computer Interfaces for Real-Time Motor Decoding.
Front Neuroinform. 2017 Oct 31;11:62. (PMID: 29163118)
Nature. 2006 Jul 13;442(7099):164-71. (PMID: 16838014)
J Neural Eng. 2016 Apr;13(2):026021. (PMID: 26902372)
Front Neuroeng. 2010 Mar 30;3:3. (PMID: 20407639)
Nat Rev Neurosci. 2012 May 18;13(6):407-20. (PMID: 22595786)
Nat Neurosci. 2018 Sep;21(9):1281-1289. (PMID: 30127430)
PLoS One. 2014 Jan 08;9(1):e85192. (PMID: 24416360)
Nature. 2023 Jun;618(7963):126-133. (PMID: 37225984)
J Neurosci. 2008 Nov 5;28(45):11526-36. (PMID: 18987189)
Cell Rep. 2023 May 30;42(5):112467. (PMID: 37141095)
IEEE Trans Neural Syst Rehabil Eng. 2020 Jan;28(1):297-306. (PMID: 31725383)
Adv Sci (Weinh). 2019 Mar 07;6(9):1801617. (PMID: 31065516)
APL Bioeng. 2025 Apr 16;9(2):026106. (PMID: 40247859)
J Neural Eng. 2013 Oct;10(5):056005. (PMID: 23918061)
J Neurosci Methods. 2004 Oct 15;139(1):99-109. (PMID: 15351526)
BMC Biomed Eng. 2019 Sep 3;1:22. (PMID: 32903354)
Cell. 2025 Mar 06;188(5):1208-1225.e32. (PMID: 40054446)
J Neural Eng. 2021 Mar 08;18(3):. (PMID: 33326943)
Brain Inj. 2015;29(9):1056-61. (PMID: 26182228)
Commun Biol. 2023 Jan 6;6(1):14. (PMID: 36609559)
J Neural Eng. 2018 Apr;15(2):026007. (PMID: 29363625)
Science. 2021 May 21;372(6544):831-836. (PMID: 34016775)
J Neurosci. 2019 May 29;39(22):4299-4311. (PMID: 30914446)
J Neural Eng. 2015 Jun;12(3):036009. (PMID: 25946198)
Sci Adv. 2016 Nov 09;2(11):e1601027. (PMID: 28861464)
Nature. 2019 Apr;568(7753):493-498. (PMID: 31019317)
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1744-1755. (PMID: 34428142)
Adv Sci (Weinh). 2025 Dec;12(45):e06663. (PMID: 40913530)
J Neural Eng. 2020 Jul 10;17(4):046008. (PMID: 32498058)
Elife. 2017 Feb 21;6:. (PMID: 28220753)
J Neurosci Methods. 2024 Nov;411:110251. (PMID: 39151656)
Nature. 2023 Aug;620(7976):1037-1046. (PMID: 37612505)
Nat Commun. 2023 Nov 6;14(1):6938. (PMID: 37932250)
IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):370-8. (PMID: 19497822)
Nat Biotechnol. 2021 Mar;39(3):326-335. (PMID: 32895549)
J Neural Eng. 2012 Aug;9(4):046003. (PMID: 22713666)
Weitere Informationen
Brain-computer interfaces (BCIs) enable communication between individuals and computers or other assistive devices by decoding brain activity, thereby reconstructing speech and motor functions for patients with neurological disorders. This study presents a high-resolution micro-electrocorticography (µECoG) BCI based on a flexible, high-density µECoG electrode array, capable of chronically stable and real-time motor decoding. Leveraging micro-nano manufacturing technology, the µECoG BCI achieves a 64-fold increase in electrode density compared to conventional clinical electrode arrays, enhancing spatial resolution while featuring scalability. Over a 203-day in vivo experiment, high-resolution µECoG carrying fine spatial specificity information demonstrated the potential to improve decoding performance while reduce implanted devices size. These advancements provide a pathway to overcome the limitations of conventional ECoG BCIs. During awake surgery, the µECoG BCI enabled game control after 7 min of model training. Furthermore, during practice of 19.87 h, the participant achieved cursor control with a bit rate of 1.13 bits per second (BPS) under full volitional control, and the bit rate reached up to 4.15 BPS with enhanced user interface. These results show that the µECoG BCI achieves comparable performance to intracortical electroencephalographic (iEEG) BCIs without intracortical invasiveness, marking a breakthrough in the clinical feasibility of flexible BCIs.
(© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.)