Treffer: Efficient, Hierarchical, and Object-Oriented Electronic Structure Interfaces for Direct Nonadiabatic Dynamics Simulations.

Title:
Efficient, Hierarchical, and Object-Oriented Electronic Structure Interfaces for Direct Nonadiabatic Dynamics Simulations.
Authors:
Mausenberger S; Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria., Polonius S; Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria., Mai S; Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria., González L; Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.; Research Platform on Accelerating Photoreaction Discovery (ViRAPID), University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
Source:
Journal of chemical theory and computation [J Chem Theory Comput] 2025 Sep 23; Vol. 21 (18), pp. 8994-9008. Date of Electronic Publication: 2025 Sep 10.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: American Chemical Society Country of Publication: United States NLM ID: 101232704 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1549-9626 (Electronic) Linking ISSN: 15499618 NLM ISO Abbreviation: J Chem Theory Comput Subsets: PubMed not MEDLINE; MEDLINE
Imprint Name(s):
Original Publication: Washington, D.C. : American Chemical Society, c2005-
References:
J Phys Condens Matter. 2017 Jul 12;29(27):273002. (PMID: 28323250)
J Comput Chem. 2022 Sep 15;43(24):1641-1655. (PMID: 35815854)
Wiley Interdiscip Rev Comput Mol Sci. 2018 Nov-Dec;8(6):e1370. (PMID: 30450129)
J Chem Phys. 2024 Jun 21;160(23):. (PMID: 38884395)
Nat Rev Chem. 2021 Jun;5(6):388-405. (PMID: 37118026)
Chem Sci. 2024 Nov 28;16(2):596-609. (PMID: 39703417)
J Chem Phys. 2025 Apr 28;162(16):. (PMID: 40260801)
J Chem Phys. 2020 Jul 14;153(2):024109. (PMID: 32668948)
J Chem Theory Comput. 2013 Jan 8;9(1):263-72. (PMID: 26589028)
J Chem Theory Comput. 2013 Nov 12;9(11):4959-72. (PMID: 26583414)
J Chem Theory Comput. 2014 Dec 9;10(12):5366-76. (PMID: 26583220)
Nat Comput Sci. 2023 Mar;3(3):230-239. (PMID: 38177878)
Chem Sci. 2024 Sep 2;:. (PMID: 39282652)
Acc Chem Res. 2021 Oct 19;54(20):3760-3771. (PMID: 34570472)
J Chem Theory Comput. 2018 Dec 11;14(12):6139-6148. (PMID: 30299941)
J Phys Chem A. 2022 Sep 29;126(38):6780-6789. (PMID: 36107729)
J Chem Theory Comput. 2016 Mar 8;12(3):1207-19. (PMID: 26854874)
Phys Chem Chem Phys. 2024 Jan 17;26(3):1829-1844. (PMID: 38170796)
J Chem Theory Comput. 2024 Oct 8;20(19):8437-8449. (PMID: 39284746)
J Chem Phys. 2024 Jul 21;161(3):. (PMID: 39007371)
Phys Chem Chem Phys. 2020 Jul 21;22(27):15183-15196. (PMID: 32582887)
J Phys Chem B. 2024 Jan 11;128(1):109-116. (PMID: 38154096)
Phys Chem Chem Phys. 2024 Sep 11;26(35):23256-23263. (PMID: 39193656)
Chem Rev. 2015 Jun 24;115(12):5797-890. (PMID: 25851499)
J Chem Phys. 2023 Nov 14;159(18):. (PMID: 37947507)
Phys Chem Chem Phys. 2018 Dec 19;21(1):57-69. (PMID: 30306987)
J Comput Chem. 2021 Mar 5;42(6):458-464. (PMID: 33368350)
J Chem Theory Comput. 2024 Jul 9;20(13):5609-5634. (PMID: 38885637)
J Chem Phys. 2014 Aug 7;141(5):054110. (PMID: 25106573)
J Phys Chem B. 2008 Jan 17;112(2):405-13. (PMID: 18081339)
Chem Rev. 2015 Jun 24;115(12):5607-42. (PMID: 25843427)
J Chem Theory Comput. 2015 Apr 14;11(4):1360-74. (PMID: 26574348)
Chem Rev. 2018 Apr 11;118(7):3305-3336. (PMID: 29465231)
J Chem Theory Comput. 2023 Aug 22;19(16):5356-5368. (PMID: 37506288)
Chem Sci. 2025 May 13;16(24):11128-11137. (PMID: 40417306)
J Chem Theory Comput. 2023 Oct 24;19(20):7056-7076. (PMID: 37769271)
J Phys Chem Lett. 2018 Oct 18;9(20):6096-6102. (PMID: 30286602)
J Chem Theory Comput. 2020 Sep 8;16(9):5485-5498. (PMID: 32687710)
J Chem Phys. 2008 Feb 28;128(8):084106. (PMID: 18315032)
J Chem Theory Comput. 2020 Oct 13;16(10):6418-6427. (PMID: 32808780)
J Chem Phys. 2018 Mar 28;148(12):124119. (PMID: 29604835)
J Chem Phys. 2020 Feb 28;152(8):084108. (PMID: 32113349)
J Chem Theory Comput. 2022 Aug 9;18(8):4601-4614. (PMID: 35901266)
J Chem Theory Comput. 2022 Mar 8;18(3):1320-1328. (PMID: 35104136)
J Chem Theory Comput. 2023 Mar 28;19(6):1657-1671. (PMID: 36856706)
Philos Trans A Math Phys Eng Sci. 2022 May 16;380(2223):20200382. (PMID: 35341303)
J Chem Phys. 2024 Jul 28;161(4):. (PMID: 39051837)
J Chem Theory Comput. 2022 Nov 8;18(11):6851-6865. (PMID: 36194696)
J Chem Inf Model. 2023 Mar 13;63(5):1406-1412. (PMID: 36811959)
J Chem Phys. 2016 Nov 7;145(17):170901. (PMID: 27825224)
J Phys Chem Lett. 2020 May 21;11(10):3828-3834. (PMID: 32311258)
J Chem Theory Comput. 2023 Oct 24;19(20):6933-6991. (PMID: 37216210)
J Chem Theory Comput. 2023 Oct 24;19(20):6859-6890. (PMID: 37382508)
J Chem Theory Comput. 2010 Aug 10;6(8):2325-38. (PMID: 26613489)
Chem Sci. 2019 Aug 5;10(35):8100-8107. (PMID: 31857878)
J Chem Phys. 2015 Feb 14;142(6):064109. (PMID: 25681889)
J Chem Theory Comput. 2020 Dec 8;16(12):7681-7689. (PMID: 33231447)
J Chem Phys. 2023 Jan 28;158(4):044801. (PMID: 36725506)
J Chem Theory Comput. 2021 Dec 14;17(12):7373-7383. (PMID: 34843643)
Chem Sci. 2021 Mar 10;12(14):5302-5314. (PMID: 34163763)
Chem Rev. 2018 Aug 8;118(15):7026-7068. (PMID: 29767966)
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305. (PMID: 16240044)
J Chem Phys. 2016 May 14;144(18):184103. (PMID: 27179467)
J Chem Theory Comput. 2017 Aug 8;13(8):3493-3504. (PMID: 28617595)
J Chem Phys. 2012 Dec 14;137(22):22A514. (PMID: 23249051)
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. (PMID: 10062328)
Chem Rev. 2012 Jan 11;112(1):632-72. (PMID: 21866983)
J Comput Chem. 2016 May 15;37(13):1230-7. (PMID: 26841135)
Chem Sci. 2021 Apr 29;12(21):7294-7307. (PMID: 34163820)
J Chem Theory Comput. 2019 Jun 11;15(6):3450-3460. (PMID: 30995044)
Phys Chem Chem Phys. 2023 Mar 22;25(12):8293-8316. (PMID: 36916738)
J Phys Chem Lett. 2024 Nov 28;15(47):11891-11895. (PMID: 39569995)
J Phys Chem A. 2025 Mar 13;129(10):2655-2666. (PMID: 40036625)
J Chem Theory Comput. 2019 Feb 12;15(2):1317-1328. (PMID: 30511845)
ACS Omega. 2022 Dec 08;7(50):45810-45824. (PMID: 36570264)
J Phys Chem Lett. 2025 Mar 20;16(11):2800-2807. (PMID: 40059452)
J Chem Theory Comput. 2022 Sep 13;18(9):5213-5220. (PMID: 36044726)
J Chem Theory Comput. 2023 Oct 24;19(20):7171-7186. (PMID: 37788824)
Entry Date(s):
Date Created: 20250910 Latest Revision: 20250927
Update Code:
20250927
PubMed Central ID:
PMC12461921
DOI:
10.1021/acs.jctc.5c00878
PMID:
40928332
Database:
MEDLINE

Weitere Informationen

We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. This framework streamlines the development of new interfaces by providing a reusable and extendable code base. It supports the computation of energies, gradients, various couplings─like spin-orbit couplings, nonadiabatic couplings, and transition dipole moments─and other properties for an arbitrary number of states with any multiplicities and charges. A key innovation within this framework is the introduction of hybrid interfaces, which can use other interfaces in a general hierarchical manner. Hybrid interfaces are capable of using one or more child interfaces to implement multiscale approaches, such as quantum mechanics/molecular mechanics where different child interfaces are assigned to different regions of a system. The concept of hybrid interfaces can be extended through nesting, where hybrid parent interfaces use hybrid child interfaces to easily setup complex workflows without the need for additional coding. We demonstrate the versatility of hybrid interfaces with two examples: one at the method level and one at the workflow level. The first example showcases the numerical differentiation of wave function overlaps, implemented as a hybrid interface and used to optimize a minimum-energy conical intersection with numerical nonadiabatic couplings. The second example presents an adaptive learning workflow, where nested hybrid interfaces are used to iteratively refine a machine learning model. This work lays the groundwork for more modular, flexible, and scalable software design in excited-state dynamics.