Treffer: Stillbirth Discourse on Instagram and X (Formerly Twitter): Content Analysis.
Reprod Sci. 2016 Jan;23(1):92-7. (PMID: 26156855)
Health Soc Care Community. 2009 Mar;17(2):167-76. (PMID: 19281517)
PLoS Med. 2014 Jul 01;11(7):e1001670. (PMID: 24983970)
Body Image. 2020 Jun;33:152-163. (PMID: 32193169)
Z Psychosom Med Psychother. 2021 Sep;67(3):329-350. (PMID: 34524058)
JMIR Form Res. 2021 Feb 3;5(2):e21156. (PMID: 33400681)
JAMA Netw Open. 2022 Feb 1;5(2):e2147046. (PMID: 35113162)
BJOG. 2018 Jan;125(2):246-252. (PMID: 28929637)
Am J Obstet Gynecol. 2020 Mar;222(3):B2-B20. (PMID: 32004519)
Lancet. 2011 Apr 16;377(9774):1353-66. (PMID: 21496915)
J Med Internet Res. 2024 Dec 10;26:e56680. (PMID: 39656509)
Obstet Gynecol. 2020 Jan;135(1):166-173. (PMID: 31809440)
Am J Bioeth. 2019 Dec;19(12):74-77. (PMID: 31746714)
J Med Internet Res. 2021 Jan 20;23(1):e17187. (PMID: 33470931)
Omega (Westport). 2011-2012;64(4):275-302. (PMID: 22530294)
Women Birth. 2022 Jul;35(4):e389-e396. (PMID: 34334339)
Front Public Health. 2021 Jul 09;9:654481. (PMID: 34307273)
BMJ. 1999 Jun 26;318(7200):1721-4. (PMID: 10381705)
Psychol Health. 2024 Jul 22;:1-20. (PMID: 39039665)
Paediatr Perinat Epidemiol. 2020 Sep;34(5):544-552. (PMID: 31912544)
J Med Internet Res. 2022 Jan 25;24(1):e28152. (PMID: 34951864)
Arch Gynecol Obstet. 2022 Feb;305(2):313-322. (PMID: 34117899)
Omega (Westport). 2021 Mar;82(4):587-608. (PMID: 30691330)
Lancet Public Health. 2024 Jun;9(6):e397-e406. (PMID: 38648815)
PLoS One. 2022 Feb 15;17(2):e0264019. (PMID: 35167612)
BMC Pregnancy Childbirth. 2016 Jan 19;16:9. (PMID: 26785915)
JAMA. 2022 Mar 15;327(11):1013-1015. (PMID: 35191947)
BMJ Med. 2023 Jun 27;2(1):e000262. (PMID: 37564829)
Med Princ Pract. 2024;33(3):232-241. (PMID: 38484723)
Omega (Westport). 2021 Nov;84(1):69-90. (PMID: 31522603)
Sociol Health Illn. 2024 Jul;46(6):1275-1291. (PMID: 39031916)
IEEE J Biomed Health Inform. 2021 Jun;25(6):2193-2203. (PMID: 33170786)
BMC Pregnancy Childbirth. 2021 Nov 18;21(1):782. (PMID: 34794395)
Women Birth. 2023 Sep;36(5):446-453. (PMID: 36858915)
PLoS One. 2021 Mar 25;16(3):e0249241. (PMID: 33765104)
Nat Commun. 2022 May 10;13(1):2414. (PMID: 35538060)
BJOG. 2018 Jan;125(2):212-224. (PMID: 29193794)
Front Sociol. 2022 May 06;7:886498. (PMID: 35602001)
Vaccine. 2023 Jun 7;41(25):3688-3700. (PMID: 37012114)
BJOG. 2024 Jul;131(8):1120-1128. (PMID: 38221506)
Eur J Oncol Nurs. 2025 Aug;77:102922. (PMID: 40628117)
Obstet Gynecol. 2007 May;109(5):1156-66. (PMID: 17470598)
AJOG Glob Rep. 2025 Mar 28;5(2):100487. (PMID: 40329962)
Commun Psychol. 2024 Feb 24;2(1):15. (PMID: 39242975)
Women Birth. 2020 Nov;33(6):526-530. (PMID: 33092702)
BMC Pregnancy Childbirth. 2025 Jan 3;25(1):4. (PMID: 39754069)
Weitere Informationen
Background: Stillbirth, the loss of a fetus after the 20th week of pregnancy, affects about 1 in 160 deliveries in the United States and nearly 1 in 70 globally. It profoundly affects parents, often resulting in grief, depression, anxiety, and posttraumatic stress disorder, exacerbated by societal stigma and a lack of public awareness. However, no comprehensive analysis has explored social media discussions of stillbirth.
Objective: This study aimed to analyze stillbirth-related content on Instagram and X (formerly Twitter) by (1) identifying dominant themes using topic modeling, evaluated using latent Dirichlet allocation, non-negative matrix factorization (NMF), and BERTopic; (2) detecting influential hashtags via co-occurrence network analysis; (3) examining sentiments and emotions using transformer-based models; (4) categorizing visual representations of stillbirth on Instagram (Meta) through manual image analysis with a predefined codebook; and (5) screening for misinformation relating to stillbirth on X.
Methods: Stillbirth-related posts were collected via RapidAPI (N=27,395), with Instagram posts (#stillbirth: n=7415; #stillbirthawareness: n=8312; 2023-2024) and X posts (#stillbirth: n=11,668; 2020-2024) analyzed using Python 3.12.7 (Python Software Foundation), with NetworkX for hashtag co-occurrence networks and the PageRank algorithm; comparative analyses were restricted to 2023-2024 due to Instagram application programming interface constraints. Topic modeling was evaluated using latent Dirichlet allocation, NMF, and BERTopic, with coherence scores guiding our model selection. Sentiment and emotion were analyzed using transformer-based RoBERTa and DistilRoBERTa. Misinformation screening was applied to X posts. On Instagram, 2 representative image samples (n=366) were manually categorized using a predefined codebook, with the interrater reliability being assessed using Cohen Kappa.
Results: Health-related hashtags (eg, #COVID19) appeared more frequently on X. Topic modeling showed that NMF achieved the highest coherence scores (#stillbirthawareness=0.624 and #stillbirth=0.846 on Instagram, #stillbirth=0.816 on X). Medical misinformation appeared in 27.8% (149/536) of tweets linking COVID-19 vaccines to stillbirth. In the image analysis, "Image of text" was most common, followed by remembrance visuals (eg, gravesites and stillborn infants). The interrater reliability was strong, κ=0.837 (95% CI 0.773-0.891) and κ=0.821 (95% CI 0.755-0.879), with high Pearson correlation (r=0.999; P<.001) and no significant difference (χ²7=12.4; P=.09). The sentiment analysis found that positive sentiments exceeded negative sentiments. The emotion analysis showed that fear and sadness were dominant, with fear being more prevalent on X.
Conclusions: Instagram emphasizes emotional expression while X focuses on public health and informational content. Evidence-based communication is necessary to counter misinformation, especially on X, whose real-time affordances amplify fear-based narratives during crises, such as COVID-19. In addition, Instagram's visual and commemorative content offers an opportunity to legitimize parental grief and to validate and humanize loss by directly involving bereaved parents in awareness campaigns. Platform-specific strategies and stronger moderation could enhance health discourse credibility. Future research should examine targeted approaches to counter misinformation and assist affected populations.
(© Abigail Paradise Vit, Daniel Fraidin, Yaniv S Ovadia. Originally published in JMIR Infodemiology (https://infodemiology.jmir.org).)