Treffer: Plant Biotic Stress: Tools and Techniques for Crop Protection.
Original Publication: Clifton, N.J. : Humana Press,
Velásquez AC, Castroverde CDM, He SY (2018) Plant–pathogen warfare under changing climate conditions. Curr Biol 28:R619–R634. https://doi.org/10.1016/j.cub.2018.03.054. (PMID: 10.1016/j.cub.2018.03.054297877305967643)
Chaloner TM, Gurr SJ, Bebber DP (2021) Plant pathogen infection risk tracks global crop yields under climate change. Nat Clim Chang 11:710–715. https://doi.org/10.1038/s41558-021-01104-8. (PMID: 10.1038/s41558-021-01104-8)
Priya P, Patil M, Pandey P, Singh A, Babu VS, Senthil-Kumar M (2023) Stress combinations and their interactions in plants database: a one-stop resource on combined stress responses in plants. Plant J 116:1097–1117. https://doi.org/10.1111/tpj.16497. (PMID: 10.1111/tpj.1649737824297)
Liu L, Dong Y, Huang W, Du X, Ren B, Huang L, Zheng Q, Ma H (2020) A disease index for efficiently detecting wheat Fusarium head blight using sentinel-2 multispectral imagery. IEEE Access 8:52181–52191. https://doi.org/10.1109/ACCESS.2020.2980310. (PMID: 10.1109/ACCESS.2020.2980310)
Mishra P, Polder G, Vilfan N (2020) Close range spectral imaging for disease detection in plants using autonomous platforms: a review on recent studies. Curr Robot Rep 1:43–48. https://doi.org/10.1007/s43154-020-00004-7. (PMID: 10.1007/s43154-020-00004-7)
Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35:1–25. https://doi.org/10.1007/s13593-014-0246-1. (PMID: 10.1007/s13593-014-0246-1)
Henry Sum MS, Yee SF, Eng L, Poili E, Lamdin J (2017) Development of an indirect ELISA and dot-blot assay for serological detection of rice tungro disease. Biomed Res Int 2017:3608042. https://doi.org/10.1155/2017/3608042. (PMID: 10.1155/2017/3608042292019015671674)
Liu Z, Sunzhu Y, Zhou X, Hong J, Wu J (2017) Monoclonal antibody-based serological detection of Citrus yellow vein clearing virus in citrus groves. J Integr Agric 16:884–891. https://doi.org/10.1016/S2095-3119(16)61475-2. (PMID: 10.1016/S2095-3119(16)61475-2)
Kumar PV, Sharma SK, Rishi N, Baranwal VK (2017) Efficient immunodiagnosis of Citrus yellow mosaic virus using polyclonal antibodies with an expressed recombinant virion-associated protein. 3 Biotech 8:39. https://doi.org/10.1007/s13205-017-1063-4. (PMID: 10.1007/s13205-017-1063-4292911525746481)
Alvarez AM (2004) Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annu Rev Phytopathol 42:339–366. https://doi.org/10.1146/annurev.phyto.42.040803.140329. (PMID: 10.1146/annurev.phyto.42.040803.14032915283670)
Ali MM, Bachik NA, Muhadi NA, Tuan Yusof TN, Gomes C (2019) Non-destructive techniques of detecting plant diseases: a review. Physiol Mol Plant Pathol 108:101426. https://doi.org/10.1016/j.pmpp.2019.101426. (PMID: 10.1016/j.pmpp.2019.101426)
Jutimala P, Manoj Kumar K, Sahidur R, Shankar GH, Deb NP (2019) Identification of sesame phyllody transmitting insect vectors in Assam, India. Phytopathogenic Mollicutes 9:107–108. https://doi.org/10.5958/2249-4677.2019.00054.9. (PMID: 10.5958/2249-4677.2019.00054.9)
Attaluri S, Dharavath R (2023) Novel plant disease detection techniques – a brief review. Mol Biol Rep 50:9677–9690. https://doi.org/10.1007/s11033-023-08838-y. (PMID: 10.1007/s11033-023-08838-y37823933)
Byrne PF, Volk GM, Gardner C, Gore MA, Simon PW, Smith S (2018) Sustaining the future of plant breeding: the critical role of the USDA-ARS national plant germplasm system. Crop Sci 58:451–468. https://doi.org/10.2135/cropsci2017.05.0303. (PMID: 10.2135/cropsci2017.05.0303)
Mangal M, Hussain Z, Lata S, Gosavi G, Tomar BS (2021) Marker assisted detection of TYLCV and late blight resistance in tomato (Solanum lycopersicum). Indian J Agric Sci 91:1466–1469. https://doi.org/10.56093/ijas.v91i10.117431. (PMID: 10.56093/ijas.v91i10.117431)
Nevame AYM, Xia L, Nchongboh CG, Hasan MM, Alam MA, Yongbo L, Wenting Z, Yafei H, Emon RM, Ismail MR, Efisue A, Gang S, Wenhu L, Longting S (2018) Development of a new molecular marker for the resistance to tomato yellow leaf curl virus. Biomed Res Int 2018:e8120281. https://doi.org/10.1155/2018/8120281. (PMID: 10.1155/2018/8120281)
Raizada A, Souframanien J (2021) SNP genotyping and diversity analysis based on genic-SNPs through high resolution melting (HRM) analysis in blackgram [Vigna mungo (L.) Hepper]. Genet Resour Crop Evol 68:1331–1343. https://doi.org/10.1007/s10722-020-01064-6. (PMID: 10.1007/s10722-020-01064-6)
Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860. https://doi.org/10.1373/49.6.853. (PMID: 10.1373/49.6.85312765979)
Zwart RS, Thudi M, Channale S, Manchikatla PK, Varshney RK, Thompson JP (2019) Resistance to plant-parasitic nematodes in chickpea: current status and future perspectives. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00966.
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Patel V, Sikarwar RS, Payasi DK (2023) Breeding and genomic approaches towards development of Fusarium wilt resistance in chickpea. Life 13:988. https://doi.org/10.3390/life13040988. (PMID: 10.3390/life130409883710951810144025)
Irulappan V, Senthil-Kumar M (2021) Dry root rot disease assays in chickpea: a detailed methodology. J Vis Exp:e61702. https://doi.org/10.3791/61702.
Singh M, Avtar R, Lakra N, Hooda E, Singh VK, Bishnoi M, Kumari N, Punia R, Kumar N, Choudhary RR (2021) Genetic and proteomic basis of sclerotinia stem rot resistance in Indian mustard [Brassica juncea (L.) Czern & Coss.]. Genes 12:1784. https://doi.org/10.3390/genes12111784. (PMID: 10.3390/genes12111784348283918621386)
Pandey P, Senthil-Kumar M, Mysore KS (2015) Advances in plant gene silencing methods. In: Mysore KS, Senthil-Kumar M (eds) Plant gene silencing: methods and protocols. Springer, New York, pp 3–23.
Galvez LC, Banerjee J, Pinar H, Mitra A (2014) Engineered plant virus resistance. Plant Sci 228:11–25. https://doi.org/10.1016/j.plantsci.2014.07.006. (PMID: 10.1016/j.plantsci.2014.07.00625438782)
Zhao Y, Yang X, Zhou G, Zhang T (2020) Engineering plant virus resistance: from RNA silencing to genome editing strategies. Plant Biotechnol J 18:328–336. https://doi.org/10.1111/pbi.13278. (PMID: 10.1111/pbi.1327831618513)
Ganesh KV, Mathew D, Augustine R, Soni KB, Alex S, Shylaja MR, Cherian KA (2022) Development of transgenic okra (Abelmoschus esculentus L. Moench) lines having RNA mediated resistance to yellow vein mosaic virus (Geminiviridae). J Virol Methods 301:114457. https://doi.org/10.1016/j.jviromet.2022.114457. (PMID: 10.1016/j.jviromet.2022.11445734998828)
Sankara Rao K, Sreevathsa R, Sharma PD, Keshamma E, Udaya Kumar M (2008) In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro. Physiol Mol Biol Plants 14:321–328. https://doi.org/10.1007/s12298-008-0030-2. (PMID: 10.1007/s12298-008-0030-223572898)
Sharma N, Sarao NK, Mohanpuria P, Sharma A (2023) Effective agrobacterium-mediated genetic transformation of okra (Abelmoschus esculentus L.) and generation of RNAi plants resistant to Begomovirus infecting okra. J Hortic Sci Biotechnol 99:1–14. https://doi.org/10.1080/14620316.2023.2251978. (PMID: 10.1080/14620316.2023.2251978)
van Esse HP, Reuber TL, van der Does D (2020) Genetic modification to improve disease resistance in crops. New Phytol 225:70–86. https://doi.org/10.1111/nph.15967. (PMID: 10.1111/nph.1596731135961)
Tyagi S, Kesiraju K, Saakre M, Rathinam M, Raman V, Pattanayak D, Sreevathsa R (2020) Genome editing for resistance to insect pests: an emerging tool for crop improvement. ACS Omega 5:20674–20683. https://doi.org/10.1021/acsomega.0c01435. (PMID: 10.1021/acsomega.0c01435328752017450494)
Barman HN, Sheng Z, Fiaz S, Zhong M, Wu Y, Cai Y, Wang W, Jiao G, Tang S, Wei X, Hu P (2019) Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. BMC Plant Biol 19:109. https://doi.org/10.1186/s12870-019-1715-0. (PMID: 10.1186/s12870-019-1715-0308941276425558)
Yuan J, Zhang J, Zhang Y, QiQiGe W, Liu W, Yan S, Wang G (2022) Protocols for CRISPR/Cas9 mutagenesis of the oriental fruit fly bactrocera dorsalis. J Vis Exp. https://doi.org/10.3791/64195.
Chen X, Lei Y, Li H, Xu L, Yang H, Wang J, Jiang H (2021) CRISPR/Cas9 mutagenesis abolishes odorant-binding protein BdorOBP56f-2 and impairs the perception of methyl eugenol in Bactrocera dorsalis (Hendel). Insect Biochem Mol Biol 139:103656. https://doi.org/10.1016/j.ibmb.2021.103656. (PMID: 10.1016/j.ibmb.2021.10365634582991)
Wishard R, Karuppannasamy A, Asokan R, Chikmagalur Nagaraja B, Chalapathi P, Dhawane Y, Kumar SS, Maligeppagol M, Rai A (2023) CRISPR/Cas9 editing of transformer2 gene of the oriental fruit Fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) leads to intersex phenotype. J Asia Pac Entomol 26:102105. https://doi.org/10.1016/j.aspen.2023.102105. (PMID: 10.1016/j.aspen.2023.102105)
Karthik K, Hada A, Bajpai A, Patil BL, Paraselli B, Rao U, Sreevathsa R (2022) A novel tasi RNA-based micro RNA-induced gene silencing strategy to tackle multiple pests and pathogens in cotton (Gossypium hirsutum L.). Planta 257:20. https://doi.org/10.1007/s00425-022-04055-2. (PMID: 10.1007/s00425-022-04055-236538040)
Rai MK (2023) Start codon targeted (SCoT) polymorphism marker in plant genome analysis: current status and prospects. Planta 257:34. https://doi.org/10.1007/s00425-023-04067-6. (PMID: 10.1007/s00425-023-04067-636622439)
Sivalingam PN, Dokka N, Mahajan MM, Sahu B, Marathe A, Kaushal P, Ghosh PK (2021) Achieving maximum efficiency of Mungbean yellow mosaic India virus infection in mungbean by agroinoculation. 3 Biotech 12:29. https://doi.org/10.1007/s13205-021-03088-w. (PMID: 10.1007/s13205-021-03088-w350362778712281)
Sivalingam PN, Sahu B, Mahajan MM, Sridhar J, Dokka N, Marathe A, Kaushal P, Ghosh PK (2022) Enhanced transmission efficiency of begomoviruses by a single whitefly (Bemisia tabaci) using a microcage technique. J Gen Plant Pathol 88:378–382. https://doi.org/10.1007/s10327-022-01086-1. (PMID: 10.1007/s10327-022-01086-1)
Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745. https://doi.org/10.1093/jxb/erj088. (PMID: 10.1093/jxb/erj08816467410)
Leybourne DJ, Aradottir GI (2022) Common resistance mechanisms are deployed by plants against sap-feeding herbivorous insects: insights from a meta-analysis and systematic review. Sci Rep 12:17836. https://doi.org/10.1038/s41598-022-20741-3. (PMID: 10.1038/s41598-022-20741-3362841439596439)
Guo H, Zhang Y, Tong J, Ge P, Wang Q, Zhao Z, Zhu-Salzman K, Hogenhout SA, Ge F, Sun Y (2020) An aphid-secreted salivary protease activates plant defense in phloem. Curr Biol 30:4826–4836.e7. https://doi.org/10.1016/j.cub.2020.09.020. (PMID: 10.1016/j.cub.2020.09.02033035482)
Deshoux M, Monsion B, Pichon E, Jiménez J, Moreno A, Cayrol B, Thébaud G, Mugford ST, Hogenhout SA, Blanc S, Fereres A, Uzest M (2022) Role of acrostyle cuticular proteins in the retention of an aphid salivary effector. Int J Mol Sci 23:15337. https://doi.org/10.3390/ijms232315337. (PMID: 10.3390/ijms232315337364996629736059)
Corral J, Sebastià P, Coll NS, Barbé J, Aranda J, Valls M (2020) Twitching and swimming motility play a role in Ralstonia solanacearum pathogenicity. mSphere 5. https://doi.org/10.1128/msphere.00740-19.
Bhuyan S, Dutta L, Begum S, Giri SJ, Jain M, Mandal M, Ray SK (2023) A study on twitching motility dynamics in Ralstonia solanacearum microcolonies by live imaging. J Basic Microbiol 64:42. https://doi.org/10.1002/jobm.202300272. (PMID: 10.1002/jobm.20230027237612794)
Wang J, Wang X, Yang K, Lu C, Fields B, Xu Y, Shen Q, Wei Z, Friman V-P (2023) Phage selection drives resistance–virulence trade-offs in Ralstonia solanacearum plant-pathogenic bacterium irrespective of the growth temperature. Evol Lett qrad056:253. https://doi.org/10.1093/evlett/qrad056. (PMID: 10.1093/evlett/qrad056)
Selvaraj A, Thangavel K, Uthandi S (2020) Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiol Res 231:126355. https://doi.org/10.1016/j.micres.2019.126355. (PMID: 10.1016/j.micres.2019.12635531704544)
Sakthivel K, Manigundan K, Gautam RK, Singh PK, Balamurugan A, Kumar A, Sharma SK (2023) Microbe-enriched farm yard manure (MFYM) approach for the suppression of Ralstonia solanacearum Yabuuchi (Smith) inciting bacterial wilt disease in eggplant (Solanum melongena L.). Plant Soil 491:303–315. https://doi.org/10.1007/s11104-023-06119-y. (PMID: 10.1007/s11104-023-06119-y)
Kashyap AS, Manzar N, Meshram S, Sharma PK (2023) Screening microbial inoculants and their interventions for cross-kingdom management of wilt disease of solanaceous crops – a step toward sustainable agriculture. Front Microbiol 14. https://doi.org/10.3389/fmicb.2023.1174532.
Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant-Microbe Interact 19:711–724. https://doi.org/10.1094/MPMI-19-0711. (PMID: 10.1094/MPMI-19-071116838784)
Rizzi Y, Monteoliva M, Fabro G, Grosso C, Laróvere L, Alvarez M (2015) P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions. Front Plant Sci 6:572.
Qamar A, Mysore K, Senthil-Kumar M (2015) Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Front Plant Sci 6:503.
Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A (2009) Unraveling Δ1-Pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492. https://doi.org/10.1074/jbc.M109.009340. (PMID: 10.1074/jbc.M109.009340196358032785336)
Sánchez-Torres P, González-Candelas L (2003) Isolation and characterization of genes differentially expressed during the interaction between apple fruit and Penicillium expansum. Mol Plant Pathol 4:447–457. https://doi.org/10.1046/j.1364-3703.2003.00190.x. (PMID: 10.1046/j.1364-3703.2003.00190.x20569404)
Carginale V, Maria G, Capasso C, Ionata E, La Cara F, Pastore M, Bertaccini A, Capasso A (2004) Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene 332:29–34. https://doi.org/10.1016/j.gene.2004.02.030. (PMID: 10.1016/j.gene.2004.02.03015145051)
Bozkurt O, Unver T, Akkaya MS (2007) Genes associated with resistance to wheat yellow rust disease identified by differential display analysis. Physiol Mol Plant Pathol 71:251–259. https://doi.org/10.1016/j.pmpp.2008.03.002. (PMID: 10.1016/j.pmpp.2008.03.002)
Kim CY, Lee S-H, Park HC, Bae CG, Cheong YH, Choi YJ, Han C, Lee SY, Lim CO, Cho MJ (2007) Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol Plant-Microbe Interact 13:470–474. https://doi.org/10.1094/MPMI.2000.13.4.470. (PMID: 10.1094/MPMI.2000.13.4.470)
De Felice B, Wilson RR (2010) Molecular characterization of a novel pathogen-responsive receptor kinase-like in citrus limon. Tree Genet Genomes 6:47–56. https://doi.org/10.1007/s11295-009-0227-8. (PMID: 10.1007/s11295-009-0227-8)
Prathima PT, Raveendran M, Kumar KK, Rahul PR, Kumar VG, Viswanathan R, Sundar AR, Malathi P, Sudhakar D, Balasubramaniam P (2013) Differential regulation of defense-related gene expression in response to red rot pathogen Colletotrichum falcatum infection in sugarcane. Appl Biochem Biotechnol 171:488–503. https://doi.org/10.1007/s12010-013-0346-4. (PMID: 10.1007/s12010-013-0346-423861092)
Li X, Bi Z, Di R, Liang P, He Q, Liu W, Miao W, Zheng F (2016) Identification of powdery mildew responsive genes in Hevea brasiliensis through mRNA differential display. Int J Mol Sci 17:181. https://doi.org/10.3390/ijms17020181. (PMID: 10.3390/ijms17020181268403024783915)
Aseel DG, Elkobrosy DH, Abdelsalam NR, El-Saedy MA, Shama S, Hafez EE (2020) The effect of cyst nematode (Globodera rostochiensis) isolate DDH1 on gene expression in systemic leaves of potato plant: cyst nematode and gene expression. J Microbiol Biotechnol Food Sci 10:93–97. https://doi.org/10.15414/jmbfs.2020.10.1.93-97. (PMID: 10.15414/jmbfs.2020.10.1.93-97)
Sibina L, Kavitha KJ, Shabithraj K, Evans DA (2023) Differential display reverse transcription and variance on protein profile between susceptible and resistant musa cultivars in relation to infestation by Odoiporus longicollis. Proc Natl Acad Sci India Sect B Biol Sci 93:851. https://doi.org/10.1007/s40011-023-01457-4. (PMID: 10.1007/s40011-023-01457-4)
Benito EP, Prins T, van Kan JAL (1996) Application of differential display RT-PCR to the analysis of gene expression in a plant-fungus interaction. Plant Mol Biol 32:947–957. https://doi.org/10.1007/BF00020491. (PMID: 10.1007/BF000204918980545)
Sturtevant J (2000) Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology. Clin Microbiol Rev 13:408–427. https://doi.org/10.1128/cmr.13.3.408. (PMID: 10.1128/cmr.13.3.4081088598488940)
Yang T, Zhang M, Zhang N (2022) Modified northern blot protocol for easy detection of mRNAs in total RNA using radiolabeled probes. BMC Genomics 23:66. https://doi.org/10.1186/s12864-021-08275-w. (PMID: 10.1186/s12864-021-08275-w350577528772191)
Chavez-Navarrete T, Sanchez-Timm L, Pacheco-Coello R, Baisakh N, Santos-Ordóñez E (2023) Identification of differential-expressed genes in banana-biostimulant interaction using suppression subtractive hybridization. Agronomy 13:415. https://doi.org/10.3390/agronomy13020415. (PMID: 10.3390/agronomy13020415)
Mehta A, Brasileiro ACM, Souza DSL, Romano E, Campos MA, Grossi-de-Sá MF, Silva MS, Franco OL, Fragoso RR, Bevitori R, Rocha TL (2008) Plant–pathogen interactions: what is proteomics telling us? FEBS J 275:3731–3746. https://doi.org/10.1111/j.1742-4658.2008.06528.x. (PMID: 10.1111/j.1742-4658.2008.06528.x18616468)
Wen Z, Yao L, Wan R, Li Z, Liu C, Wang X (2015) Ectopic expression in Arabidopsis thaliana of an NB-ARC encoding putative disease resistance gene from wild Chinese Vitis pseudoreticulata enhances resistance to phytopathogenic fungi and bacteria. Front Plant Sci 6:1087. https://doi.org/10.3389/fpls.2015.01087. (PMID: 10.3389/fpls.2015.01087266970414674559)
Kong J, Wei M, Li G, Lei R, Qiu Y, Wang C, Li Z-H, Zhu S (2018) The cucumber mosaic virus movement protein suppresses PAMP-triggered immune responses in Arabidopsis and tobacco. Biochem Biophys Res Commun 498:395–401. https://doi.org/10.1016/j.bbrc.2018.01.072. (PMID: 10.1016/j.bbrc.2018.01.07229407169)
Zhao J, Li L, Liu Q, Liu P, Li S, Yang D, Chen Y, Pagnotta S, Favery B, Abad P, Jian H (2019) A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. J Exp Bot 70:5943–5958. https://doi.org/10.1093/jxb/erz348. (PMID: 10.1093/jxb/erz348313657446812717)
Ali N, Chen H, Zhang C, Khan SA, Gandeka M, Xie D, Zhuang W (2020) Ectopic expression of AhGLK1b (GOLDEN2-like transcription factor) in Arabidopsis confers dual resistance to fungal and bacterial pathogens. Genes 11:343. https://doi.org/10.3390/genes11030343. (PMID: 10.3390/genes11030343322139707141132)
Chen S, Ma T, Song S, Li X, Fu P, Wu W, Liu J, Gao Y, Ye W, Dry IB, Lu J (2021) Arabidopsis downy mildew effector HaRxLL470 suppresses plant immunity by attenuating the DNA-binding activity of bZIP transcription factor HY5. New Phytol 230:1562–1577. https://doi.org/10.1111/nph.17280. (PMID: 10.1111/nph.1728033586184)
Wei W, Xu L, Peng H, Zhu W, Tanaka K, Cheng J, Sanguinet KA, Vandemark G, Chen W (2022) A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein. Nat Commun 13:2213. https://doi.org/10.1038/s41467-022-29788-2. (PMID: 10.1038/s41467-022-29788-2354688949038911)
Sahoo A, Satapathy KB, Panigrahi GK (2023) Ectopic expression of disease resistance protein promotes resistance against pathogen infection and drought stress in Arabidopsis. Physiol Mol Plant Pathol 124:101949. https://doi.org/10.1016/j.pmpp.2023.101949. (PMID: 10.1016/j.pmpp.2023.101949)
Bouwmeester K, de Sain M, Weide R, Gouget A, Klamer S, Canut H, Govers F (2011) The lectin receptor kinase LecRK-I.9 is a novel phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog 7:e1001327. https://doi.org/10.1371/journal.ppat.1001327. (PMID: 10.1371/journal.ppat.1001327214834883068997)
He Y, Li W, Lv J, Jia Y, Wang M, Xia G (2012) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522. https://doi.org/10.1093/jxb/err389. (PMID: 10.1093/jxb/err38922140235)
Qu Z-L, Zhong N-Q, Wang H-Y, Chen A-P, Jian G-L, Xia G-X (2006) Ectopic expression of the cotton non-symbiotic hemoglobin gene GhHbd1 triggers defense responses and increases disease tolerance in Arabidopsis. Plant Cell Physiol 47:1058–1068. https://doi.org/10.1093/pcp/pcj076. (PMID: 10.1093/pcp/pcj07616854938)
Pinzón A, Barreto E, Bernal A, Achenie L, González Barrios AF, Isea R, Restrepo S (2009) Computational models in plant-pathogen interactions: the case of Phytophthora infestans. Theor Biol Med Model 6:24. https://doi.org/10.1186/1742-4682-6-24. (PMID: 10.1186/1742-4682-6-24199095262787490)
Dobon A, Bunting DCE, Cabrera-Quio LE, Uauy C, Saunders DGO (2016) The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics 17:380. https://doi.org/10.1186/s12864-016-2684-4. (PMID: 10.1186/s12864-016-2684-4272071004875698)
Jain A, Singh HB, Das S (2021) Deciphering plant-microbe crosstalk through proteomics studies. Microbiol Res 242:126590. https://doi.org/10.1016/j.micres.2020.126590. (PMID: 10.1016/j.micres.2020.12659033022544)
Toruño TY, Stergiopoulos I, Coaker G (2016) Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu Rev Phytopathol 54:419–441. https://doi.org/10.1146/annurev-phyto-080615-100204. (PMID: 10.1146/annurev-phyto-080615-100204273593695283857)
Perez-Quintero AL, Szurek B (2019) A decade decoded: spies and hackers in the history of TAL effectors research. Annu Rev Phytopathol 57:459–481. https://doi.org/10.1146/annurev-phyto-082718-100026. (PMID: 10.1146/annurev-phyto-082718-10002631387457)
Bhadauria V, Banniza S, Wei Y, Peng Y-L (2009) Reverse genetics for functional genomics of phytopathogenic fungi and oomycetes. Int J Genom 2009:e380719. https://doi.org/10.1155/2009/380719. (PMID: 10.1155/2009/380719)
Zaynab M, Fatima M, Abbas S, Umair M, Sharif Y, Raza MA (2018) Long non-coding RNAs as molecular players in plant defense against pathogens. Microb Pathog 121:277–282. https://doi.org/10.1016/j.micpath.2018.05.050. (PMID: 10.1016/j.micpath.2018.05.05029859899)
Sahu PP, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2014) Involvement of host regulatory pathways during geminivirus infection: a novel platform for generating durable resistance. Funct Integr Genomics 14:47–58. https://doi.org/10.1007/s10142-013-0346-z. (PMID: 10.1007/s10142-013-0346-z24233104)
Mishra B, Kumar N, Mukhtar MS (2019) Systems biology and machine learning in plant–pathogen interactions. Mol Plant-Microbe Interact 32:45–55. https://doi.org/10.1094/MPMI-08-18-0221-FI. (PMID: 10.1094/MPMI-08-18-0221-FI30418085)
Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CK-M, Nayak SC (2016) Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev 40:182–207. https://doi.org/10.1093/femsre/fuv045. (PMID: 10.1093/femsre/fuv04526591004)
Mahlein A-K, Kuska MT, Behmann J, Polder G, Walter A (2018) Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annu Rev Phytopathol 56:535–558. https://doi.org/10.1146/annurev-phyto-080417-050100. (PMID: 10.1146/annurev-phyto-080417-05010030149790)
Barroso-Bergadà D, Massot M, Vignolles N, Faivre d’Arcier J, Chancerel E, Guichoux E, Walker A-S, Vacher C, Bohan DA, Laval V, Suffert F (2023) Metagenomic next-generation sequencing (mNGS) data reveal the phyllosphere microbiome of wheat plants infected by the fungal pathogen Zymoseptoria tritici. Phytobiomes J 7:281–287. https://doi.org/10.1094/PBIOMES-02-22-0008-FI. (PMID: 10.1094/PBIOMES-02-22-0008-FI)
Cambon MC, Cartry D, Chancerel E, Ziegler C, Levionnois S, Coste S, Stahl C, Delzon S, Buée M, Burban B, Cazal J, Fort T, Goret J-Y, Heuret P, Léger P, Louisanna E, Ritter Y, Bonal D, Roy M, Schimann H, Vacher C (2023) Drought tolerance traits in neotropical trees correlate with the composition of phyllosphere fungal communities. Phytobiomes J 7:244–258. https://doi.org/10.1094/PBIOMES-04-22-0023-R. (PMID: 10.1094/PBIOMES-04-22-0023-R)
Hassani MA, Gonzalez O, Hunter SS, Holmes GJ, Hewavitharana SS, Ivors K, Lazcano C (2023) Microbiome network connectivity and composition linked to disease resistance in strawberry plants. Phytobiomes J 7:298–311. https://doi.org/10.1094/PBIOMES-10-22-0069-R. (PMID: 10.1094/PBIOMES-10-22-0069-R)
Huo D, Malacrinò A, Lindsey LE, Benitez M-S (2023) Subtle responses of soil bacterial communities to corn-soybean-wheat rotation. Phytobiomes J 7:392–400. https://doi.org/10.1094/PBIOMES-05-22-0032-R. (PMID: 10.1094/PBIOMES-05-22-0032-R)
Bartoli C, Roux F (2017) Genome-wide association studies in plant Pathosystems: toward an ecological genomics approach. Front Plant Sci 8:763.
Demirjian C, Vailleau F, Berthomé R, Roux F (2023) Genome-wide association studies in plant pathosystems: success or failure? Trends Plant Sci 28:471–485. https://doi.org/10.1016/j.tplants.2022.11.006. (PMID: 10.1016/j.tplants.2022.11.00636522258)
Sharifi R, Lee S-M, Ryu C-M (2018) Microbe-induced plant volatiles. New Phytol 220:684–691. https://doi.org/10.1111/nph.14955. (PMID: 10.1111/nph.1495529266296)
Aldon D, Mbengue M, Mazars C, Galaud J-P (2018) Calcium signalling in plant biotic interactions. Int J Mol Sci 19:665. https://doi.org/10.3390/ijms19030665. (PMID: 10.3390/ijms19030665294954485877526)
Negi NP, Prakash G, Narwal P, Panwar R, Kumar D, Chaudhry B, Rustagi A (2023) The calcium connection: exploring the intricacies of calcium signaling in plant-microbe interactions. Front Plant Sci 14:1248648. https://doi.org/10.3389/fpls.2023.1248648. (PMID: 10.3389/fpls.2023.12486483784984310578444)
Vylkova S (2017) Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog 13:e1006149. https://doi.org/10.1371/journal.ppat.1006149. (PMID: 10.1371/journal.ppat.1006149282313175322887)
Kesten C, Gámez-Arjona FM, Menna A, Scholl S, Dora S, Huerta AI, Huang H, Tintor N, Kinoshita T, Rep M, Krebs M, Schumacher K, Sánchez-Rodríguez C (2019) Pathogen-induced pH changes regulate the growth-defense balance in plants. EMBO J 38:e101822. https://doi.org/10.15252/embj.2019101822. (PMID: 10.15252/embj.2019101822317361116912046)
Ramegowda V, Senthil A, Senthil-Kumar M (2024) Stress combinations and their interactions in crop plants. Plant Physiol Rep 29:1–5. https://doi.org/10.1007/s40502-024-00785-5. (PMID: 10.1007/s40502-024-00785-5)
Wang Z, Zeng J, Deng J, Hou X, Zhang J, Yan W, Cai Q (2023) Pathogen-derived extracellular vesicles: emerging mediators of plant-microbe interactions. Mol Plant-Microbe Interact 36:218–227. https://doi.org/10.1094/MPMI-08-22-0162-FI. (PMID: 10.1094/MPMI-08-22-0162-FI36574017)
Serag A, Salem MA, Gong S, Wu J-L, Farag MA (2023) Decoding metabolic reprogramming in plants under pathogen attacks, a comprehensive review of emerging metabolomics technologies to maximize their applications. Metabolites 13:424. https://doi.org/10.3390/metabo13030424. (PMID: 10.3390/metabo130304243698486410055942)
Weitere Informationen
As climate change continues to impact crop yields, developing strategies to enhance plant tolerance to biotic stress has become increasingly important. This requires a thorough evaluation of the tools and methodologies used to manipulate and study biotic stress tolerance. It is crucial to comprehensively understand both conventional and modern techniques, as well as their effectiveness in addressing the specific needs of the crop under study. Detecting diseases at the early stages of plant development can prevent significant losses in large-scale cultivations. Two broad approaches commonly used to mitigate biotic stresses are eliminating causative agents such as fungi, bacteria, nematodes, viruses, or pests, and imparting resistance to the plant. Although there are similarities in the tools and techniques used to address different biotic stresses, each scenario requires dedicated case studies. It is also essential to stay up to date with the latest developments in plant biotechnology to incorporate a cross-disciplinary approach in conducting and validating experiments. This chapter provides an overview of methods covered in this book ranging from molecular breeding to nondestructive techniques that help achieve the goal of safeguarding plant health.
(© 2026. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)