Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Hijacking a bacterial ABC transporter for genetic code expansion.

Title:
Hijacking a bacterial ABC transporter for genetic code expansion.
Authors:
Iype T; Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Zurich, Switzerland., Fottner M; Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Zurich, Switzerland., Böhm P; Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Zurich, Switzerland., Piedrafita C; Center for Protein Assemblies, TUM School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany., Möller Y; Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Zurich, Switzerland., Groll M; Center for Protein Assemblies, TUM School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany., Lang K; Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zurich, Zurich, Switzerland. kathrin.lang@org.chem.ethz.ch.; Center for Protein Assemblies, TUM School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany. kathrin.lang@org.chem.ethz.ch.
Source:
Nature [Nature] 2025 Nov; Vol. 647 (8091), pp. 1045-1053. Date of Electronic Publication: 2025 Oct 15.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
Imprint Name(s):
Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
References:
J Mol Biol. 2010 Jan 15;395(2):361-74. (PMID: 19852970)
Nature. 2025 Mar;639(8054):512-521. (PMID: 39910296)
Nature. 2019 May;569(7757):514-518. (PMID: 31092918)
Nat Commun. 2022 Sep 16;13(1):5434. (PMID: 36114189)
J Am Chem Soc. 2019 Mar 6;141(9):3885-3892. (PMID: 30726077)
Chembiochem. 2022 Sep 16;23(18):e202200302. (PMID: 35906721)
Chem Rev. 2024 Oct 23;124(20):11544-11584. (PMID: 39311880)
Microb Biotechnol. 2021 May;14(3):1120-1129. (PMID: 33710766)
Chembiochem. 2022 Apr 20;23(8):e202200133. (PMID: 35263494)
Org Biomol Chem. 2020 Jun 7;18(21):4000-4003. (PMID: 32427272)
Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3191-6. (PMID: 12604795)
J Am Chem Soc. 2023 May 10;145(18):10249-10258. (PMID: 37125745)
Cell Metab. 2018 Jan 9;27(1):151-166.e6. (PMID: 29198988)
ACS Cent Sci. 2024 May 20;10(6):1211-1220. (PMID: 38947215)
Proc Natl Acad Sci U S A. 1973 Feb;70(2):456-8. (PMID: 4568730)
Nat Rev Microbiol. 2020 Mar;18(3):164-176. (PMID: 31792365)
Mol Syst Biol. 2006;2:2006.0008. (PMID: 16738554)
Metab Eng. 2024 Sep;85:26-34. (PMID: 38802041)
ACS Chem Biol. 2018 May 18;13(5):1137-1141. (PMID: 29544052)
Nat Chem Biol. 2011 Sep 18;7(11):779-86. (PMID: 21926996)
Angew Chem Int Ed Engl. 2017 Dec 4;56(49):15737-15741. (PMID: 28960788)
Chem Rev. 2024 Oct 9;124(19):11008-11062. (PMID: 39235427)
Nat Chem Biol. 2017 Aug;13(8):845-849. (PMID: 28604693)
Nat Chem Biol. 2019 Mar;15(3):276-284. (PMID: 30770915)
Nat Commun. 2021 Nov 11;12(1):6515. (PMID: 34764289)
Chem Rev. 2024 Sep 25;124(18):10281-10362. (PMID: 39120726)
Angew Chem Int Ed Engl. 2018 Oct 26;57(44):14350-14361. (PMID: 30144241)
Nat Chem Biol. 2017 Dec;13(12):1253-1260. (PMID: 29035361)
Nat Chem Biol. 2017 Jul;13(7):697-705. (PMID: 28632705)
Nature. 2019 Jan;565(7737):112-117. (PMID: 30542153)
J Mol Biol. 2011 Nov 18;414(1):75-85. (PMID: 21983341)
Nat Struct Mol Biol. 2023 Jan;30(1):62-71. (PMID: 36593310)
Science. 2002 May 3;296(5569):913-6. (PMID: 11988576)
Chem. 2020 Oct 8;6(10):2717-2727. (PMID: 33102928)
Chem Rev. 2014 May 14;114(9):4764-806. (PMID: 24655057)
Nat New Biol. 1973 Feb 7;241(110):161-3. (PMID: 4573266)
J Am Chem Soc. 2003 Jan 29;125(4):935-9. (PMID: 12537491)
Sci Rep. 2015 May 18;5:9699. (PMID: 25982672)
Angew Chem Int Ed Engl. 2021 Apr 26;60(18):10040-10048. (PMID: 33570250)
Mol Cell. 2009 Oct 9;36(1):153-63. (PMID: 19818718)
Nat Methods. 2017 Jul;14(7):729-736. (PMID: 28553966)
Science. 2021 Jun 4;372(6546):1057-1062. (PMID: 34083482)
Biochemistry. 2024 Dec 17;63(24):3184-3188. (PMID: 39586687)
Nature. 2024 Jan;625(7995):603-610. (PMID: 38200312)
J Am Chem Soc. 2009 Jul 1;131(25):8720-1. (PMID: 19514718)
Nat Methods. 2023 Jan;20(1):95-103. (PMID: 36550276)
J Am Chem Soc. 2022 Jul 27;144(29):13118-13126. (PMID: 35850488)
Angew Chem Int Ed Engl. 2022 Mar 1;61(10):e202111085. (PMID: 34847623)
Chem Rev. 2024 Aug 28;124(16):9580-9608. (PMID: 38953775)
Nature. 2010 Mar 18;464(7287):441-4. (PMID: 20154731)
J Am Chem Soc. 2016 Sep 7;138(35):11344-52. (PMID: 27500802)
Science. 2013 Oct 18;342(6156):357-60. (PMID: 24136966)
Annu Rev Biochem. 2020 Jun 20;89:605-636. (PMID: 32569521)
Nat Chem. 2018 Aug;10(8):831-837. (PMID: 29807989)
ACS Synth Biol. 2019 May 17;8(5):1195-1203. (PMID: 30971082)
Chem Rev. 2024 Mar 13;124(5):2805-2838. (PMID: 38373737)
FEBS Lett. 2012 Mar 23;586(6):729-33. (PMID: 22289181)
Chem Rev. 2024 Jun 12;124(11):7465-7530. (PMID: 38753805)
RSC Adv. 2018 Jul 17;8(45):25558-25567. (PMID: 30713681)
Substance Nomenclature:
0 (ATP-Binding Cassette Transporters)
0 (Amino Acids)
0 (Escherichia coli Proteins)
0 (Bacterial Proteins)
Entry Date(s):
Date Created: 20251015 Date Completed: 20251127 Latest Revision: 20251201
Update Code:
20251202
PubMed Central ID:
PMC12657241
DOI:
10.1038/s41586-025-09576-w
PMID:
41094137
Database:
MEDLINE

Weitere Informationen

The site-specific encoding of non-canonical amino acids (ncAAs) provides a powerful tool for expanding the functional repertoire of proteins <sup>1-4</sup> . Its widespread use for basic research and biotechnological applications is, however, hampered by the low efficiencies of current ncAA incorporation strategies. Here we reveal poor cellular ncAA uptake as a main obstacle to efficient genetic code expansion and overcome this bottleneck by hijacking a bacterial ATP-binding cassette (ABC) transporter <sup>5</sup> to actively import easily synthesizable isopeptide-linked tripeptides that are processed into ncAAs within the cell. Using this approach, we enable efficient encoding of a variety of previously inaccessible ncAAs, decorating proteins with bioorthogonal <sup>6</sup> and crosslinker <sup>7</sup> moieties, post-translational modifications <sup>8,9</sup> and functionalities for chemoenzymatic conjugation. We then devise a high-throughput directed evolution platform to engineer tailored transporter systems for the import of ncAAs that were historically refractory to efficient uptake. Customized Escherichia coli strains expressing these evolved transporters facilitate single and multi-site ncAA incorporation with wild-type efficiencies. Additionally, we adapt the tripeptide scaffolds for the co-transport of two different ncAAs, enabling their efficient dual incorporation. Collectively, our study demonstrates that engineering of uptake systems is a powerful strategy for programmable import of chemically diverse building blocks.
(© 2025. The Author(s).)

Competing interests: K.L, M.F. and T.I are named as inventors on a pending patent application EP24205590.3. The other authors declare no competing interests.