Treffer: Easy Proteomics Sample Preparation: Technical Repeatability and Workflow Optimization Across 8 Biological Matrices in a New Core Facility Setting.
Nat Methods. 2022 Jul;19(7):803-811. (PMID: 35710609)
Nat Protoc. 2007;2(8):1896-906. (PMID: 17703201)
J Proteome Res. 2024 Oct 4;23(10):4303-4315. (PMID: 39254081)
Sci Rep. 2021 Jun 11;11(1):12358. (PMID: 34117303)
Nat Protoc. 2019 Jan;14(1):68-85. (PMID: 30464214)
Front Mol Biosci. 2023 Nov 30;10:1327233. (PMID: 38099196)
Methods Mol Biol. 1984;1:1-3. (PMID: 20512668)
J Proteome Res. 2023 Jan 6;22(1):272-278. (PMID: 36480176)
Mol Cell Proteomics. 2021;20:100126. (PMID: 34332123)
Methods Mol Biol. 2021;2223:201-215. (PMID: 33226597)
Mol Cell Proteomics. 2023 Aug;22(8):100612. (PMID: 37391045)
Proteomics. 2025 Oct;25(20):15-24. (PMID: 41132037)
Clin Proteomics. 2023 Apr 2;20(1):14. (PMID: 37005570)
Proteomes. 2020 Jul 06;8(3):. (PMID: 32640657)
Nat Commun. 2025 Jan 2;16(1):95. (PMID: 39747075)
Nat Methods. 2020 Dec;17(12):1229-1236. (PMID: 33257825)
Platelets. 2017 Jan;28(1):43-53. (PMID: 27589083)
Nucleic Acids Res. 2025 Jan 6;53(D1):D543-D553. (PMID: 39494541)
Biomedicines. 2022 Aug 24;10(9):. (PMID: 36140166)
Nat Cancer. 2024 Aug;5(8):1267-1284. (PMID: 38942927)
Nature. 2020 Mar;579(7799):409-414. (PMID: 32188942)
Nat Methods. 2020 Jan;17(1):41-44. (PMID: 31768060)
J Mol Biol. 2019 Jul 26;431(16):2957-2969. (PMID: 31103772)
Nat Commun. 2023 Jul 12;14(1):4154. (PMID: 37438352)
BMC Vet Res. 2013 Jul 17;9:144. (PMID: 23866028)
Nat Methods. 2013 Oct;10(10):989-91. (PMID: 23975139)
Res Pract Thromb Haemost. 2019 Jul 16;3(4):615-625. (PMID: 31624781)
Mol Cell Proteomics. 2025 Mar;24(3):100917. (PMID: 39880082)
Weitere Informationen
Bottom-up proteomics relies on efficient and repeatable sample preparation for accurate protein identification and precise quantification. This study evaluates the performance of adapted SPEED (Sample Preparation by Easy Extraction and Digestion) protocol, a simplified, detergent-free approach tailored for various biological matrices, including lysis-resistant samples. Protein extraction and denaturation steps were refined for 8 biological matrices enabling standardized, cheap, and scalable proteomics analysis on 96-well plates. For tissue samples requiring downstream applications like Western blotting, we used a low-detergent RIPA buffer. Notably, the protocols demonstrate remarkable down-scalability, enabling robust proteomics measurements from as few as 3000 cells per sample for preparation and even down to 300 cells per LC-MS/MS analysis. Key advancements include a 30-min nanoLC-MS/MS run, achieving a 15-20 samples-per-day throughput, and leveraging the power of diaPASEF using thoroughly optimized DIA-windows to enhance proteome coverage. These adaptations streamline workflows, enabling proteomics analyses in matrices with challenging physical and biochemical properties. This study underscores the importance of early-stage optimization and feasibility testing in proteomics pipelines to inform study design and sample selection. By showcasing robust, scalable adaptations of the SPEED protocol, we provide a foundation for reproducible, high-throughput proteomic studies across diverse biological contexts.
(© 2025 The Author(s). PROTEOMICS published by Wiley‐VCH GmbH.)