Treffer: Codon Usage Preference and Evolutionary Analysis of Pseudorabies Virus.
Front Microbiol. 2023 Oct 10;14:1248573. (PMID: 37881250)
Nucleic Acids Res. 1980 Jan 11;8(1):r49-r62. (PMID: 6986610)
J Vet Med Sci. 1996 Sep;58(9):819-24. (PMID: 8898277)
Nucleic Acids Res. 1987 Feb 11;15(3):1281-95. (PMID: 3547335)
Viruses. 2020 Sep 06;12(9):. (PMID: 32899965)
Viruses. 2022 Apr 25;14(5):. (PMID: 35632637)
Adv Sci (Weinh). 2023 Aug;10(23):e2205445. (PMID: 37267926)
J Virol. 1987 Sep;61(9):2691-701. (PMID: 3039163)
Clin Infect Dis. 2022 Mar 1;74(4):756. (PMID: 35067714)
Biol Direct. 2008 Sep 16;3:38. (PMID: 18796141)
Curr Opin Genet Dev. 1994 Dec;4(6):851-60. (PMID: 7888755)
J Virol. 2004 Aug;78(15):8015-25. (PMID: 15254173)
Microbiol Mol Biol Rev. 2005 Sep;69(3):462-500. (PMID: 16148307)
Front Microbiol. 2022 Aug 03;13:965997. (PMID: 35992660)
Ann Bot. 2017 Nov 28;120(6):893-909. (PMID: 29155926)
Emerg Microbes Infect. 2016 Oct 12;5(10):e107. (PMID: 27729643)
PLoS One. 2017 Sep 7;12(9):e0183646. (PMID: 28880881)
Int J Mol Sci. 2024 Dec 06;25(23):. (PMID: 39684850)
Yi Chuan Xue Bao. 2005 Jun;32(6):616-24. (PMID: 16018189)
Emerg Infect Dis. 2018 Jun;24(6):1087-1090. (PMID: 29774834)
Nucleic Acids Res. 1988 Sep 12;16(17):8207-11. (PMID: 3138659)
Yi Chuan. 2007 Apr;29(4):420-6. (PMID: 17548303)
Cell. 2015 Mar 12;160(6):1111-24. (PMID: 25768907)
Genome. 2020 Apr;63(4):215-224. (PMID: 31986060)
BMC Evol Biol. 2007 Nov 08;7:214. (PMID: 17996036)
Gene. 1990 Mar 1;87(1):23-9. (PMID: 2110097)
Infect Genet Evol. 2014 Dec;28:95-100. (PMID: 25239728)
Vet Microbiol. 2017 Sep;208:97-105. (PMID: 28888658)
Viruses. 2022 Jan 18;14(2):. (PMID: 35215764)
Virusdisease. 2014;25(3):285-93. (PMID: 25674595)
BMC Evol Biol. 2007 Nov 15;7:226. (PMID: 18005411)
Mol Biol Rep. 2022 Jan;49(1):539-565. (PMID: 34822069)
Vaccines (Basel). 2023 Jul 27;11(8):. (PMID: 37631856)
Nucleic Acids Res. 1986 Jul 11;14(13):5125-43. (PMID: 3526280)
0 (Codon)
Weitere Informationen
Background: Pseudorabies virus (PRV), a critical porcine herpesvirus, induces severe diseases in both livestock and wildlife, imposing an incalculable burden and economic losses in livestock production. In this study, we investigated the evolutionary mechanisms and host adaptation strategies of the PRV gB gene through genomic alignment. The gB gene is highly conserved in PRV, and its encoded gB protein exhibits functional interchangeability across different herpesvirus species. Notably, the gB protein elicits the production of both complement-dependent and complement-independent neutralizing antibodies in animals, while also being closely associated with syncytium formation. Methods: Phylogenetic analysis and codon usage pattern analysis were performed in this study. A total of 110 gB gene sequences were analyzed, which were collected from [2011 to 2024] across the following regions: [Fujian, Shanxi, Guangxi, Guangdong, Chongqing, Henan, Shaanxi, Heilongjiang, Sichuan, Jiangsu, Jilin, Huzhou, Shandong, Hubei, Jiangxi, Beijing, Shanghai, Chengdu (China)], [Budapest, Szeged (Hungary)], [Tokyo (Japan)], [London (United Kingdom)], [Athens (Greece)], [Berlin (Germany)], and [New Jersey (United States)]. Results: The gB gene of PRV employs an evolutionary "selective optimization" strategy to maintain a dynamic balance between ensuring functional expression and evading host immune pressure, with this core trend strongly supported by its codon usage bias and mutation characteristics. First, the gene exhibits significant codon usage bias [Effective Number of Codons (ENC) = 27.94 ± 0.1528], driven primarily by natural selection rather than mere mutational pressure. Second, phylogenetic analysis shows that the second codon position of gB has the highest mutation rate (1.0586)-a feature closely linked to its antigenic variation and immune escape capabilities, further reflecting adaptive evolution against host immune pressure. Additionally, ENC-GC3 plot analysis reveals the complex regulatory mechanisms underlying codon bias formation, providing molecular evidence for the "selective optimization" strategy and clarifying PRV's core evolutionary path to balance functional needs and immune pressure over time. Conclusions: Our study findings deepen our understanding of the evolutionary mechanisms of PRV and provide theoretical support for designing vaccines and assessing the risk of cross-species transmission.