Treffer: Enhancing Microparticle Separation Efficiency in Acoustofluidic Chips via Machine Learning and Numerical Modeling.
Drug Discov Today. 2019 Mar;24(3):773-780. (PMID: 30472429)
Microsyst Nanoeng. 2021 Mar 3;7:20. (PMID: 34567734)
Nat Commun. 2024 Oct 20;15(1):9059. (PMID: 39428395)
Biophys Rev. 2023 Aug 29;15(6):2005-2025. (PMID: 38192342)
ACS Sens. 2017 Aug 25;2(8):1175-1183. (PMID: 28730815)
Front Cell Dev Biol. 2024 Feb 13;12:1344705. (PMID: 38419843)
Micromachines (Basel). 2021 Sep 23;12(10):. (PMID: 34683199)
NPJ Digit Med. 2019 Jul 26;2:69. (PMID: 31372505)
Nat Commun. 2023 Feb 16;14(1):869. (PMID: 36797284)
Lab Chip. 2016 Sep 21;16(18):3466-72. (PMID: 27477388)
Adv Colloid Interface Sci. 2024 Oct;332:103276. (PMID: 39146580)
Curr Opin Struct Biol. 2021 Feb;66:216-224. (PMID: 33421906)
Anal Chem. 2022 May 17;94(19):7060-7065. (PMID: 35468282)
Small. 2022 Oct;18(42):e2203169. (PMID: 36026569)
Lab Chip. 2019 Oct 9;19(20):3397-3404. (PMID: 31508644)
Biosens Bioelectron. 2022 Dec 15;218:114751. (PMID: 36215735)
Biomark Res. 2024 Dec 5;12(1):153. (PMID: 39639411)
Microsyst Nanoeng. 2022 Apr 28;8:45. (PMID: 35498337)
Sci Adv. 2023 Feb 22;9(8):eadd9186. (PMID: 36812320)
Microsyst Nanoeng. 2022 Sep 1;8:94. (PMID: 36060525)
Biomed Eng Online. 2020 Feb 12;19(1):9. (PMID: 32050989)
Sensors (Basel). 2016 Aug 12;16(8):. (PMID: 27529247)
Nat Commun. 2025 Jan 15;16(1):494. (PMID: 39814720)
J Nanobiotechnology. 2023 Feb 4;21(1):40. (PMID: 36739414)
Bone Joint Res. 2023 Aug 9;12(8):494-496. (PMID: 37553119)
Nano Converg. 2024 May 29;11(1):22. (PMID: 38811455)
Anal Chem. 2022 Mar 8;94(9):3872-3880. (PMID: 35179372)
Lab Chip. 2023 May 30;23(11):2497-2513. (PMID: 37199118)
Anal Chem. 2023 Jan 11;:. (PMID: 36629753)
Brief Bioinform. 2022 Jan 17;23(1):. (PMID: 34477201)
Biosensors (Basel). 2024 Dec 13;14(12):. (PMID: 39727877)
ACS Omega. 2018 Aug 29;3(8):10084-10091. (PMID: 31459137)
Engineering (Beijing). 2025 Apr;47:130-138. (PMID: 40330125)
Anal Chem. 2022 Dec 27;94(51):18000-18008. (PMID: 36524711)
Adv Healthc Mater. 2023 Aug;12(20):e2203172. (PMID: 36971091)
Micromachines (Basel). 2024 Jun 30;15(7):. (PMID: 39064385)
Anal Chem. 2025 Apr 8;97(13):6847-6870. (PMID: 40133046)
Lab Chip. 2015 May 7;15(9):2102-9. (PMID: 25824937)
Nat Commun. 2021 Feb 18;12(1):1118. (PMID: 33602914)
Front Pharmacol. 2024 Dec 17;15:1459938. (PMID: 39741631)
ACS Mater Au. 2023 Aug 21;3(6):600-619. (PMID: 38089666)
Curr Opin Biotechnol. 2019 Feb;55:60-67. (PMID: 30172910)
Micromachines (Basel). 2024 Jul 10;15(7):. (PMID: 39064412)
Lab Chip. 2023 Mar 1;23(5):1300-1338. (PMID: 36806847)
Weitere Informationen
An integrated approach for enhancing microparticle separation efficiency in acoustofluidic lab-on-a-chip systems is presented, combining numerical modeling in COMSOL 6.2 Multiphysics <sup>®</sup> with reinforcement learning techniques implemented in Python 3.10.14. The proposed method addresses the limitations of traditional parameter tuning, which is time-consuming and computationally intensive. A simulation framework based on LiveLink™ for COMSOL-Python integration enables the automatic generation, execution, and evaluation of particle separation scenarios. Reinforcement learning algorithms, trained on both successful and failed experiments, are employed to optimize control parameters such as flow velocity and acoustic frequency. Experimental data from over 100 numerical simulations were used to train a neural network, which demonstrated the ability to accurately predict and improve sorting efficiency. The results confirm that incorporating failed outcomes into the reward structure significantly improves learning convergence and model accuracy. This work contributes to the development of intelligent microfluidic systems capable of autonomous adaptation and optimization for biomedical and analytical applications, such as label-free separation of microplastics from biological fluids, selective sorting of soot and ash particles for environmental monitoring, and high-precision manipulation of cells or extracellular vesicles for diagnostic assays.