Treffer: Hi-C3: a statistical inference-based model for reconstructing higher-order cell-cell communication networks.
Original Publication: London ; Birmingham, AL : H. Stewart Publications, [2000-
Nature. 2015 Sep 10;525(7568):251-5. (PMID: 26287467)
Genome Biol. 2019 Dec 23;20(1):295. (PMID: 31870412)
Nat Rev Immunol. 2015 Nov;15(11):669-82. (PMID: 26471778)
Nat Genet. 2020 Jun;52(6):594-603. (PMID: 32451460)
Nat Commun. 2021 Feb 17;12(1):1088. (PMID: 33597522)
Plant Cell. 2021 May 5;33(3):511-530. (PMID: 33955487)
Immunol Cell Biol. 1997 Jun;75(3):223-30. (PMID: 9243286)
Cell. 2020 Apr 16;181(2):442-459.e29. (PMID: 32302573)
Nat Genet. 2001 Nov;29(3):295-300. (PMID: 11685206)
Brief Bioinform. 2020 May 21;21(3):1080-1097. (PMID: 31329830)
Nucleic Acids Res. 2020 Jun 4;48(10):e55. (PMID: 32196115)
Brief Bioinform. 2024 Jul 25;25(5):. (PMID: 39276328)
Dev Cell. 2019 Mar 25;48(6):840-852.e5. (PMID: 30913408)
Curr Opin Syst Biol. 2021 Jun;26:12-23. (PMID: 33969247)
J Gastroenterol Hepatol. 2013 Jun;28(6):967-74. (PMID: 23425061)
Nat Med. 2015 Nov;21(11):1350-6. (PMID: 26457759)
Sci Adv. 2021 Apr 14;7(16):. (PMID: 33853780)
Oncogene. 2008 Jan 10;27(3):323-31. (PMID: 17621268)
Nat Commun. 2020 Oct 6;11(1):5011. (PMID: 33024107)
Nat Protoc. 2025 Jan;20(1):180-219. (PMID: 39289562)
Nature. 2022 Jan;601(7893):422-427. (PMID: 34987224)
Protein Cell. 2020 Dec;11(12):866-880. (PMID: 32435978)
Plant Biotechnol J. 2022 Nov;20(11):2123-2134. (PMID: 35842742)
Mol Cancer Res. 2016 Sep;14(9):795-804. (PMID: 27353028)
Cancer Cell. 2024 Jul 8;42(7):1268-1285.e7. (PMID: 38981439)
Research (Wash D C). 2024 Nov 01;7:0522. (PMID: 39494219)
Plant Cell. 2021 Aug 13;33(7):2197-2220. (PMID: 33822225)
Nucleic Acids Res. 2024 Jan 5;52(D1):D1053-D1061. (PMID: 37953328)
Dev Cell. 2022 May 23;57(10):1299-1310.e4. (PMID: 35512702)
Cell Biol Toxicol. 2019 Apr;35(2):89-93. (PMID: 30815784)
Nat Rev Genet. 2021 Feb;22(2):71-88. (PMID: 33168968)
Front Genet. 2019 Jul 12;10:629. (PMID: 31354786)
iScience. 2024 Nov 02;27(12):111131. (PMID: 39618495)
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E679-88. (PMID: 26792522)
Development. 2018 Aug 30;145(16):. (PMID: 30166318)
Nat Commun. 2022 Jun 27;13(1):3665. (PMID: 35760817)
Sci Adv. 2025 Aug 8;11(32):eadv3316. (PMID: 40779623)
Front Immunol. 2018 Sep 12;9:2084. (PMID: 30258446)
Nat Rev Genet. 2017 Sep;18(9):551-562. (PMID: 28607512)
Cell Biosci. 2021 Jul 03;11(1):121. (PMID: 34217372)
BMC Bioinformatics. 2023 Nov 7;24(1):420. (PMID: 37936079)
Nat Commun. 2022 Jun 1;13(1):3043. (PMID: 35650211)
Brief Bioinform. 2022 Mar 10;23(2):. (PMID: 35106553)
Nat Commun. 2022 Jun 9;13(1):3224. (PMID: 35680885)
Nat Rev Cancer. 2017 Feb;17(2):79-92. (PMID: 28050011)
Weitere Informationen
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, and immune response. Recent computational methods have leveraged single-cell RNA sequencing (scRNA-seq) to infer CCC via ligand-receptor interactions (LRIs), with most approaches focusing on pairwise interactions. However, many biological processes are driven by the coordinated action of multiple cell types, underscoring the need to model higher-order cellular interactions beyond pairwise interactions. Inspired by principles of network diffusion and epidemic dynamics, we first model the receptor expression as: a Poisson-distributed random variable biologically regulated by the collective signaling of multiple ligand-producing cell types. Then, we propose Hi-C3, a unified statistical inference-based framework for inferring both conventional pairwise and new higher-order CCC patterns from scRNA-seq data, which is solved via an efficient likelihood-based (EM) algorithm. Particularly, Hi-C3 employed a modified PageRank algorithm to assess the importance of individual cells or cell types within the higher-order network, revealing key cellular communication hubs supported by independent spatial and biological evidence. When applied to diverse datasets from Arabidopsis thaliana and colorectal cancer, Hi-C3 achieved comparable performance to state-of-the-art methods in the inferring pairwise communication while uniquely uncovering complex higher-order cellular communication structures. Collectively, Hi-C3 offers a powerful statistical model and computational framework for uncovering complex and coordinated multicellular signaling structures disregarded by pairwise communication inference methods, and offers novel biology network insights into the logic of cellular organization and communication in both development and disease.
(© The Author(s) 2025. Published by Oxford University Press.)