Result: NIRFASTerFF: an accessible, cross-platform Python package for fast photon modeling.
J Biomed Opt. 2014 Apr;19(4):040801. (PMID: 24781586)
Appl Opt. 1995 Dec 1;34(34):8026-37. (PMID: 21068901)
IEEE Trans Med Imaging. 2020 Apr;39(4):877-887. (PMID: 31442973)
Neurophotonics. 2021 Apr;8(2):025008. (PMID: 34036117)
J Biomed Opt. 2012 Mar;17(3):036013. (PMID: 22502571)
Opt Lett. 2001 Jun 15;26(12):893-5. (PMID: 18040483)
Rep Prog Phys. 2010 Jul;73(7):. (PMID: 26120204)
Commun Numer Methods Eng. 2008 Aug 15;25(6):711-732. (PMID: 20182646)
Med Phys. 1995 Nov;22(11 Pt 1):1779-92. (PMID: 8587533)
J Biomed Opt. 2016 Sep;21(9):091312. (PMID: 27420810)
Opt Express. 2009 Oct 26;17(22):20178-90. (PMID: 19997242)
Appl Opt. 1983 Aug 15;22(16):2456-62. (PMID: 18196156)
J Biomed Opt. 2017 Dec;22(12):1-11. (PMID: 29197176)
Rev Sci Instrum. 2019 May;90(5):051101. (PMID: 31153254)
IEEE Trans Med Imaging. 2023 Aug;42(8):2439-2450. (PMID: 37028063)
Appl Opt. 1988 May 1;27(9):1820-4. (PMID: 20531660)
Biomed Opt Express. 2024 Aug 02;15(9):5009-5024. (PMID: 39296388)
Phys Med Biol. 1995 Nov;40(11):1957-75. (PMID: 8587943)
Med Phys. 1992 Jul-Aug;19(4):879-88. (PMID: 1518476)
Phys Med Biol. 2002 Jun 21;47(12):2059-73. (PMID: 12118601)
J Opt Soc Am A Opt Image Sci Vis. 1994 Oct;11(10):2727-41. (PMID: 7931757)
J Biomed Opt. 2007 Sep-Oct;12(5):051402. (PMID: 17994863)
Phys Med Biol. 2011 Dec 7;56(23):7419-34. (PMID: 22056913)
Biomed Opt Express. 2022 Dec 13;14(1):148-162. (PMID: 36698672)
Appl Opt. 1995 May 20;34(15):2683-7. (PMID: 21052412)
Nat Photonics. 2014 Jun;8(6):448-454. (PMID: 25083161)
Med Phys. 2000 Jan;27(1):252-64. (PMID: 10659765)
Neuroimage. 2012 Jul 16;61(4):1120-8. (PMID: 22330315)
J Opt Soc Am A Opt Image Sci Vis. 1997 Jan;14(1):246-54. (PMID: 8988618)
Phys Med Biol. 2003 Aug 21;48(16):2713-27. (PMID: 12974584)
Opt Express. 2007 Apr 2;15(7):4066-82. (PMID: 19532650)
Further Information
Significance: Accurate and efficient photon modeling plays an essential role in the rapidly developing field of diffuse optical imaging, whereby the use of model-based analysis and image reconstruction can provide both educational and research benefits.
Aim: NIRFASTerFF is a cross-platform (Linux, macOS, and Windows) Python package for finite element method (FEM)-based light propagation modeling, supporting continuous-wave, frequency-domain, and time-resolved data for both exogenous and endogenous optical imaging applications. It also enables modeling of the autocorrelation function ( INLINEMATH ) for diffuse correlation spectroscopy. Validation is performed through comparison with the original NIRFAST and gold-standard Monte Carlo simulations.
Approach: NIRFASTerFF incorporates highly parallelized FEM solvers for efficient computation on both CPU and GPU, leveraging OpenMP and CUDA acceleration. To support image reconstruction tasks, voxel-based interpolation of the optical fluence is implemented, providing a flexible and accurate representation of the forward solution suitable for inverse problem formulations.
Results: Compared with its predecessor, NIRFASTer, the optimized algorithms provide a performance boost of 25% to 45% on GPU and up to 20% on CPU, and the results show good agreement with both Monte Carlo and analytical solutions.
Conclusion: The NIRFASTerFF package provides a fast and license-free tool for photon modeling and can further streamline Python-based data processing in diffuse optical imaging, benefiting the biophotonics community.
(© 2025 The Authors.)