Treffer: Advancing Applications of the Expanded Genetic Alphabet: Monitoring Expanded Genetic Letters in Complex DNA Context Via a Bridge-Base Approach.
Dien, V. T., Holcomb, M., Feldman, A. W., Fischer, E. C., Dwyer, T. J., & Romesberg, F. E. (2018). Progress toward a semi‐synthetic organism with an unrestricted expanded genetic alphabet. Journal of the American Chemical Society, 140(47), 16115–16123. https://doi.org/10.1021/jacs.8b08416.
Feldman, A. W., Dien, V. T., Karadeema, R. J., Fischer, E. C., You, Y., Anderson, B. A., Krishnamurthy, R., Chen, J. S., Li, L., & Romesberg, F. E. (2019). Optimization of replication, transcription, and translation in a semi‐synthetic organism. Journal of the American Chemical Society, 141(27), 10644–10653. https://doi.org/10.1021/jacs.9b02075.
Fischer, E. C., Hashimoto, K., Zhang, Y., Feldman, A. W., Dien, V. T., Karadeema, R. J., Adhikary, R., Ledbetter, M. P., Krishnamurthy, R., & Romesberg, F. E. (2020). New codons for efficient production of unnatural proteins in a semisynthetic organism. Nature Chemical Biology, 16(5), 570–576. https://doi.org/10.1038/s41589‐020‐0507‐z.
Hirao, I., Kimoto, M., Mitsui, T., Fujiwara, T., Kawai, R., Sato, A., Harada, Y., & Yokoyama, S. (2006). An unnatural hydrophobic base pair system: Site‐specific incorporation of nucleotide analogs into DNA and RNA. Nature Methods, 3(9), 729–735. https://doi.org/10.1038/nmeth915.
Kimoto, M., & Hirao, I. (2020). Genetic alphabet expansion technology by creating unnatural base pairs. Chemical Society Reviews, 49(21), 7602–7626. https://doi.org/10.1039/d0cs00457j.
Kimoto, M., Mitsui, T., Yamashige, R., Sato, A., Yokoyama, S., & Hirao, I. (2010). A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid‐based imaging technology. Journal of the American Chemical Society, 132(43), 15418–15426. https://doi.org/10.1021/ja1072383.
Kimoto, M., Shermane Lim, Y. W., & Hirao, I. (2019). Molecular affinity rulers: Systematic evaluation of DNA aptamers for their applicabilities in ELISA. Nucleic Acids Research, 47(16), 8362–8374. https://doi.org/10.1093/nar/gkz688.
Li, L., Degardin, M., Lavergne, T., Malyshev, D. A., Dhami, K., Ordoukhanian, P., & Romesberg, F. E. (2014). Natural‐like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. Journal of the American Chemical Society, 136(3), 826–829. https://doi.org/10.1021/ja408814g.
Malyshev, D. A., Dhami, K., Lavergne, T., Chen, T., Dai, N., Foster, J. M., Corrêa, I. R., Jr, & Romesberg, F. E. (2014). A semi‐synthetic organism with an expanded genetic alphabet. Nature, 509(7500), 385–388. https://doi.org/10.1038/nature13314.
Malyshev, D. A., Seo, Y. J., Ordoukhanian, P., & Romesberg, F. E. (2009). PCR with an expanded genetic alphabet. Journal of the American Chemical Society, 131(41), 14620–14621. https://doi.org/10.1021/ja906186f.
Morihiro, K., Moriyama, Y., Nemoto, Y., Osumi, H., & Okamoto, A. (2021). Anti‐syn unnatural base pair enables alphabet‐expanded DNA self‐assembly. Journal of the American Chemical Society, 143(35), 14207–14217. https://doi.org/10.1021/jacs.1c05393.
Morris, S. E., Feldman, A. W., & Romesberg, F. E. (2017). Synthetic biology parts for the storage of increased genetic information in cells. ACS synthetic biology, 6(10), 1834–1840. https://doi.org/10.1021/acssynbio.7b00115.
Ptacin, J. L., Caffaro, C. E., Ma, L., San, J., Gall, K. M., Aerni, H. R., Acuff, N. V., Herman, R. W., Pavlova, Y., Pena, M. J., Chen, D. B., Koriazova, L. K., Shawver, L. K., Joseph, I. B., & Milla, M. E. (2021). An engineered IL‐2 reprogrammed for anti‐tumor therapy using a semi‐synthetic organism. Nature Communications, 12(1), 4785. https://doi.org/10.1038/s41467‐021‐24987‐9.
Riedl, J., Ding, Y., Fleming, A. M., & Burrows, C. J. (2015). Identification of DNA lesions using a third base pair for amplification and nanopore sequencing. Nature Communications, 6, 8807. https://doi.org/10.1038/ncomms9807.
Seo, Y. J., Hwang, G. T., Ordoukhanian, P., & Romesberg, F. E. (2009). Optimization of an unnatural base pair toward natural‐like replication. Journal of the American Chemical Society, 131(9), 3246–3252. https://doi.org/10.1021/ja807853m.
Wang, Y., Chen, Y., Hu, Y., & Fang, X. (2020). Site‐specific covalent labeling of large RNAs with nanoparticles empowered by expanded genetic alphabet transcription. Proceedings of the National Academy of Sciences of the United States of America, 117(37), 22823–22832. https://doi.org/10.1073/pnas.2005217117.
Wang, H., Zhu, W., Wang, C., Li, X., Wang, L., Huo, B., Mei, H., Zhu, A., Zhang, G., & Li, L. (2023). Locating, tracing and sequencing multiple expanded genetic letters in complex DNA context via a bridge‐base approach. Nucleic Acids Research, 51(9), e52. https://doi.org/10.1093/nar/gkad218.
Yang, Z., Chen, F., Alvarado, J. B., & Benner, S. A. (2011). Amplification, mutation, and sequencing of a six‐letter synthetic genetic system. Journal of the American Chemical Society, 133(38), 15105–15112. https://doi.org/10.1021/ja204910n.
Zhang, Y., Ptacin, J. L., Fischer, E. C., Aerni, H. R., Caffaro, C. E., San Jose, K., Feldman, A. W., Turner, C. R., & Romesberg, F. E. (2017). A semi‐synthetic organism that stores and retrieves increased genetic information. Nature, 551(7682), 644–647. https://doi.org/10.1038/nature24659.
Weitere Informationen
Genetic alphabet expansion by creating unnatural base pairs (UBPs) could renovate biological systems and next-generation biotechnologies. Among the expanded genetic letters, TPT3-NaM is one of the most advanced UBPs. It has been utilized in semi-synthetic organisms (SSOs) to recode therapeutic proteins. This article describes the synthesis of isoTAT and demonstrates that isoTAT can convert NaM to G, simultaneously pairing with both NaM and G as a bridging base. Additionally, the inherent base' preference for NaM leads to its transformation into T. Consequently, TPT3-NaM can be converted to C-G or A-T base pairs through simple PCR assays, enabling the first method to locate multiple sites of TPT3-NaM pairs dually. Taken together, this work presents the first general and convenient approach capable of locating, tracing, and sequencing site- and number-unlimited TPT3-NaM pairs. The data presented in this article are based on our previously published reports. © 2025 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of isoTAT triphosphate Basic Protocol 2: Incorporation and extension reaction of isoTAT for a template containing NaM Basic Protocol 3: Monitor DNA containing multiple UBPs using simple PCR assays with isoTAT through Sanger sequencing.
(© 2025 Wiley Periodicals LLC.)