Result: ForMileS: A Python Open-Source Program to Generate Molecular Structures for Tandem Mass Spectrometry Fragment Ions.
J Cheminform. 2021 Jul 3;13(1):48. (PMID: 34217353)
J Cheminform. 2016 Jan 29;8:3. (PMID: 26834843)
Rapid Commun Mass Spectrom. 2012 Feb 15;26(3):304-8. (PMID: 22223317)
J Cheminform. 2023 Jan 22;15(1):10. (PMID: 36683047)
Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305. (PMID: 16240044)
Anal Chem. 2021 Aug 31;93(34):11692-11700. (PMID: 34403256)
Mass Spectrom Rev. 2011 Jul-Aug;30(4):523-59. (PMID: 20623599)
J Chem Theory Comput. 2019 Mar 12;15(3):1652-1671. (PMID: 30741547)
J Chem Phys. 2020 Jun 14;152(22):224108. (PMID: 32534543)
J Mass Spectrom. 2016 Aug;51(8):602-614. (PMID: 28239969)
Anal Bioanal Chem. 2008 Oct;392(4):643-50. (PMID: 18762924)
Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789. (PMID: 9944570)
J Chem Inf Model. 2015 Oct 26;55(10):2111-20. (PMID: 26441310)
Rapid Commun Mass Spectrom. 2006;20(23):3542-50. (PMID: 17078106)
J Cheminform. 2012 Sep 17;4(1):21. (PMID: 22985496)
J Am Soc Mass Spectrom. 2024 Nov 6;35(11):2631-2641. (PMID: 39016059)
Metabolites. 2019 Apr 13;9(4):. (PMID: 31013937)
PLoS Comput Biol. 2021 Jan 5;17(1):e1008504. (PMID: 33400699)
J Chem Phys. 2010 Apr 21;132(15):154104. (PMID: 20423165)
ACS Omega. 2022 Mar 08;7(11):9710-9719. (PMID: 35350354)
J Mass Spectrom. 2022 Jan;57(1):e4802. (PMID: 34929756)
Bioinformatics. 2014 Feb 15;30(4):581-3. (PMID: 24336413)
ACS Omega. 2019 Sep 05;4(12):15120-15133. (PMID: 31552357)
J Cheminform. 2022 Apr 23;14(1):24. (PMID: 35461261)
J Chem Inf Model. 2024 Dec 23;64(24):9027-9033. (PMID: 39288001)
Further Information
Tandem mass spectrometry is a central analytical tool in chemistry, yet the fragmentation mechanisms underlying collision-induced dissociation remain incompletely understood. A key challenge is predicting fragment ion structures while preserving the essential structural features of the precursor ion. This paper introduces ForMileS (Formation of Mass SMILES), a streamlined Python open-source workflow for generating fragment ion structures with precursor-specific constraints from tandem mass spectrometry data. ForMileS employs a simplified branch-and-bound algorithm, accepting molecular formula, charge state, exact mass, and a base scaffold in SMILES format as input, along with parameters for branching, cyclicity, and bond types, via a graphical user interface. We demonstrate its application to the three main fragments of Polypropylene Glycol Octamer (PPG8), discussing the critical role of the base molecular scaffold (BMS) in the final structure set. Relative energy calculations using Density Functional Theory confirm the presence of expected structures, highlighting the lowest energy conformers. When applied to the smallest fragment of dipropylene glycol dimethyl ether (DGDE), ForMileS reveals that only linear double-bonded or cyclic structures are plausible, with the former being energetically favored. While successfully generating plausible structures, the exhaustive combinatorial charge generation step and the unrefined branch-and-bound method limit ForMileS's performance, restricting its applicability to small molecules like C <subscript>6</subscript> O <subscript>3</subscript> H <subscript>19</subscript> . This highlights the importance of future performance optimization through heuristics and energetic filters.
(© 2025 The Authors. Published by American Chemical Society.)