Treffer: Isomorphisms of Maximal Self-complementary [Formula: see text]-codes.
Original Publication: Leyden, Brill.
Bussilo L, Michel C, Pirillo G (2012) On conjugation partitions of sets of trinucleotides. Appl Math 3:107–112. (PMID: 10.4236/am.2012.31017)
Clark J, Holton DA (1991) A first look at graph theory. World Scientific, Singapore. (PMID: 10.1142/1280)
Crick FH, Griffith JS, Orgel LE (1957) Codes without commas. Proc Natl Acad Sci U S A 43:416–421. (PMID: 10.1073/pnas.43.5.416)
Fayazi F, Fimmel E, Strüngmann L (2021) Equivalence classes of circular codes induced by permutation groups, Vol.:(0112 33456789) Theory in Biosciences 140, 107-121.
Fimmel E, Gonzalez DL, Giannerini S, Strüngmann L (2014) Circular codes, symmetries and transformations. J Math Biol. https://doi.org/10.1007/s00285-014-0806-7. (PMID: 10.1007/s00285-014-0806-7)
Fimmel E, Giannerini S, Gonzalez D, Strüngmann L (2015) Dinucleotide circular codes and bijective transformations. J Theor Biol 386:159–165. (PMID: 10.1016/j.jtbi.2015.08.034)
Fimmel E, Michel CJ, Strüngmann L (2016) N-nucleotide circular codes in graph theory. Philos Trans R Soc Lond A Math Phys Eng Sci 374:1–19.
Fimmel E, Michel CJ, Strüngmann L (2017) Diletter circular codes over finite alphabets. Math Biosci 294:120–129. (PMID: 10.1016/j.mbs.2017.10.001)
Fimmel E, Michel CJ, Starman M, Strüngmann L (2018) Self-complementary circular codes in coding theory. Theory Biosci 137:51–65. (PMID: 10.1007/s12064-018-0259-4)
Fimmel E, Michel C, Pirot F, Sereni J-S, Strüngmann L (2019) Commafree Codes Over Finite Alphabets, hal-02376793.
Fimmel E, Michel C, Pirot F, Sereni J-S, Starman M, Strüngmann L (2020) The relation between k-circularity and circularity of codes. Bull Math Biol. https://doi.org/10.1007/s11538-020-00770-7. (PMID: 10.1007/s11538-020-00770-7)
Giannerini S, Gonzalez DL, Greta G, Alberto D (2021) A role for circular code properties in translation, Scientific Reports.
Michel CJ, Pirillo G (2011) Strong trinucleotide circular codes. Int J Comb. https://doi.org/10.1155/2011/659567. (PMID: 10.1155/2011/659567)
Michel CJ, Pirillo G, Pirillo MA (2008) A relation between trinucleotide comma-free codes and trinucleotide circular codes. Theor Comput Sci 401:17–26. (PMID: 10.1016/j.tcs.2008.02.049)
Michel CJ, Pirillo G, Pirillo MA (2012) A classification of 20-trinucleotide circular codes. Inf Comput 212:55–63. (PMID: 10.1016/j.ic.2011.12.001)
Woese CR (1969) The biological significance of the genetic code. Prog. Mol. Subcell, Biol, p 1.
Weitere Informationen
In this work, we investigate isomorphisms of graphs associated with the 216 maximal self-complementary [Formula: see text]-codes over the genetic alphabet [Formula: see text]. Such codes play an important role in maintaining the correct reading frame during the translational process in the ribosome and have been classified into 27 equivalence classes under the action of the dihedral group [Formula: see text]. Naturally, this group action induces graph isomorphisms between the graphs associated with maximal self-complementary [Formula: see text]-codes, as shown in Fimmel et al. (2016). However, we demonstrate here that these induced isomorphisms of the associated graphs are not the only graph isomorphisms between such codes. Specifically, we calculate the largely non-trivial automorphism groups of all the 216 graphs associated to maximal self-complementary [Formula: see text]-codes and we show that no isomorphism exists between maximal self-complementary [Formula: see text]-codes belonging to different equivalence classes. Finally, we provide examples illustrating that the assumptions of maximality, self-complementarity, or the [Formula: see text]-property can not be omitted.
(© 2025. Prof. Dr. Jan van der Hoeven stichting voor theoretische biologie.)
Declarations. Competing interests: The authors have no relevant financial or non-financial interests to disclose.