Treffer: Identification of an innexin required for termination of the asexual state in planarian reproductive switching.

Title:
Identification of an innexin required for termination of the asexual state in planarian reproductive switching.
Authors:
Kumagai N; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Kuroda M; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Hanai T; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Fujita M; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Hino T; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Yorimoto S; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan., Manta S; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Nakagawa S; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Yokoyama M; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Tajima L; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Ito R; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Yamada H; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Miura K; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan., Kashima M; Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan., Yamaguchi K; NIBB Core Facility, National Institute for Basic Biology, Okazaki Japan., Shigenobu S; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan.; NIBB Core Facility, National Institute for Basic Biology, Okazaki Japan., Furukawa R; Department of Biology, Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa, Japan., Sekii K; Faculty of Business and Commerce, Keio University, Yokohama, Kanagawa, Japan., Kobayashi K; Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori Japan.
Source:
PLoS genetics [PLoS Genet] 2025 Nov 18; Vol. 21 (11), pp. e1011944. Date of Electronic Publication: 2025 Nov 18 (Print Publication: 2025).
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101239074 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7404 (Electronic) Linking ISSN: 15537390 NLM ISO Abbreviation: PLoS Genet Subsets: MEDLINE
Imprint Name(s):
Original Publication: San Francisco, CA : Public Library of Science, c2005-
References:
Nature. 2004 Apr 22;428(6985):860-4. (PMID: 15103378)
Phys Biol. 2021 Nov 11;19(1):. (PMID: 34638110)
Neural Dev. 2011 Apr 05;6:10. (PMID: 21466670)
Evodevo. 2023 Jan 30;14(1):2. (PMID: 36717890)
Zoolog Sci. 2012 Apr;29(4):265-72. (PMID: 22468837)
Development. 2010 Dec;137(24):4113-26. (PMID: 21098563)
Int J Dev Biol. 2012;56(1-3):93-102. (PMID: 22450997)
Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
PLoS Biol. 2016 May 10;14(5):e1002457. (PMID: 27163480)
Commun Integr Biol. 2020 Dec 10;13(1):170-183. (PMID: 33403054)
Genetics. 2014 Nov;198(3):1127-53. (PMID: 25195067)
Cell Tissue Res. 2021 Nov;386(2):391-413. (PMID: 34319433)
Evodevo. 2013 Jan 08;4(1):2. (PMID: 23294912)
Nat Commun. 2013;4:1814. (PMID: 23652002)
Genes Dev. 2010 Sep 15;24(18):2081-92. (PMID: 20844018)
Development. 2003 Dec;130(24):5869-84. (PMID: 14597570)
Trends Cell Biol. 2011 May;21(5):304-11. (PMID: 21353778)
Science. 2008 May 30;320(5880):1210-3. (PMID: 18511688)
Dev Biol. 2014 Dec 1;396(1):150-7. (PMID: 25278423)
Nucleic Acids Res. 2012 May;40(10):4288-97. (PMID: 22287627)
Dev Biol. 2007 Jan 15;301(2):432-46. (PMID: 16982048)
PLoS Biol. 2022 Jul 15;20(7):e3001472. (PMID: 35839223)
Bioinformatics. 2010 Mar 1;26(5):589-95. (PMID: 20080505)
PLoS One. 2011;6(5):e19639. (PMID: 21625556)
Sci Rep. 2019 Apr 16;9(1):6132. (PMID: 30992461)
J Ultrastruct Res. 1975 Sep;52(3):404-8. (PMID: 1159885)
Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5901-6. (PMID: 17376870)
PLoS Genet. 2022 Sep 29;18(9):e1010417. (PMID: 36174062)
PLoS Biol. 2025 Feb 18;23(2):e3003045. (PMID: 39965028)
Zoological Lett. 2021 Mar 20;7(1):4. (PMID: 33743841)
Bioinformatics. 2018 Sep 1;34(17):i884-i890. (PMID: 30423086)
STAR Protoc. 2023 Oct 27;4(4):102625. (PMID: 39491554)
Elife. 2022 Sep 13;11:. (PMID: 36098634)
Evodevo. 2021 Dec 15;12(1):15. (PMID: 34911568)
Chemosphere. 2005 Dec;61(8):1168-74. (PMID: 16263386)
PLoS Genet. 2011 Mar;7(3):e1001345. (PMID: 21455482)
Dev Growth Differ. 1997 Dec;39(6):723-7. (PMID: 9493832)
J Embryol Exp Morphol. 1973 Oct;30(2):317-28. (PMID: 4761669)
Development. 2003 Dec;130(26):6625-34. (PMID: 14660550)
Development. 2002 May;129(10):2529-39. (PMID: 11973283)
Int J Dev Biol. 2012;56(1-3):83-91. (PMID: 22252539)
Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1618-21. (PMID: 14747655)
J Exp Zool. 1970 Jul;174(3):253-79. (PMID: 5424682)
Semin Cell Dev Biol. 2016 Feb;50:22-30. (PMID: 26780117)
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10888-10893. (PMID: 28973880)
Dev Growth Differ. 2006 Dec;48(9):615-28. (PMID: 17118016)
Chem Biol. 2005 May;12(5):515-26. (PMID: 15911372)
Nat Biotechnol. 2007 Sep;25(9):1045-50. (PMID: 17704765)
Dev Biol. 2000 Apr 15;220(2):142-53. (PMID: 10753506)
J Appl Toxicol. 2014 May;34(5):537-44. (PMID: 24038158)
Curr Biol. 2006 May 23;16(10):1012-7. (PMID: 16713959)
Dev Genes Evol. 2003 Jan;212(12):585-92. (PMID: 12536322)
Development. 2015 Aug 1;142(15):2598-609. (PMID: 26116660)
Bioinformatics. 2010 Jan 1;26(1):139-40. (PMID: 19910308)
Dev Biol. 2005 Nov 15;287(2):314-35. (PMID: 16243308)
J Embryol Exp Morphol. 1971 Dec;26(3):599-609. (PMID: 5169509)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
Semin Cell Dev Biol. 2020 Jan;97:167-171. (PMID: 31558347)
Elife. 2020 Jul 31;9:. (PMID: 32735213)
Science. 2000 May 19;288(5469):1211-5. (PMID: 10817991)
Chemosphere. 2005 Jun;60(1):74-8. (PMID: 15910904)
Dev Growth Differ. 2016 Feb;58(2):215-24. (PMID: 26857440)
J Embryol Exp Morphol. 1971 Dec;26(3):587-98. (PMID: 5169508)
Zoolog Sci. 2007 Jan;24(1):31-7. (PMID: 17409714)
Chemosphere. 2003 Dec;53(8):827-33. (PMID: 14505703)
Dev Biol. 2011 Nov 1;359(1):47-58. (PMID: 21889935)
Mol Cell Endocrinol. 2011 Mar 1;334(1-2):3-13. (PMID: 20615454)
Dev Growth Differ. 2010 Jan;52(1):43-55. (PMID: 20039928)
Science. 1969 May 2;164(3879):565-6. (PMID: 5778008)
Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):5-14. (PMID: 17507077)
Dev Biol. 2010 Aug 15;344(2):979-91. (PMID: 20599901)
Cell. 2018 Jun 14;173(7):1593-1608.e20. (PMID: 29906446)
Int J Mol Sci. 2021 May 31;22(11):. (PMID: 34072911)
PLoS Biol. 2010 Oct 12;8(10):e1000509. (PMID: 20967238)
Front Zool. 2011 Oct 17;8:23. (PMID: 22005169)
Imeta. 2023 May 08;2(2):e107. (PMID: 38868435)
Zoological Lett. 2018 Jun 12;4:14. (PMID: 29942643)
Semin Cell Dev Biol. 2006 Aug;17(4):503-9. (PMID: 16807003)
Nat Methods. 2017 Apr;14(4):417-419. (PMID: 28263959)
Mech Dev. 2014 May;132:69-78. (PMID: 24434168)
Cells Dev. 2023 Jun;174:203846. (PMID: 37121433)
Int J Radiat Biol Relat Stud Phys Chem Med. 1968 Nov 29;14(4):373-88. (PMID: 5304062)
J Embryol Exp Morphol. 1970 Apr;23(2):407-18. (PMID: 5449480)
Nat Methods. 2013 Jan;10(1):71-3. (PMID: 23160280)
Nat Commun. 2021 Nov 18;12(1):6706. (PMID: 34795249)
Int J Dev Biol. 2012;56(1-3):165-71. (PMID: 22451004)
Zoolog Sci. 2021 Dec;38(6):544-557. (PMID: 34854286)
Dev Biol. 2012 Jan 1;361(1):167-76. (PMID: 22024321)
Int J Mol Sci. 2020 Jan 12;21(2):. (PMID: 31940951)
iScience. 2022 Dec 08;26(1):105776. (PMID: 36594009)
Experientia. 1995 May 15;51(5):539-44. (PMID: 7768309)
Biomolecules. 2020 Dec 10;10(12):. (PMID: 33321846)
Substance Nomenclature:
0 (Helminth Proteins)
0 (Connexins)
Entry Date(s):
Date Created: 20251118 Date Completed: 20251126 Latest Revision: 20251128
Update Code:
20251128
PubMed Central ID:
PMC12654950
DOI:
10.1371/journal.pgen.1011944
PMID:
41252438
Database:
MEDLINE

Weitere Informationen

Many metazoans switch between asexual and sexual reproduction based on environmental changes, life cycle phases, or both. This reproductive strategy enables them to benefit from the features of both reproductive modes. In general, asexual reproduction is broadly divided into parthenogenesis and vegetative reproduction. As in parthenogenesis, individuals develop ovaries and lay eggs, the most significant event in switching from parthenogenesis to sexual reproduction is the production of testes. Meanwhile, in vegetative reproduction, individuals do not need germ cells themselves. Thus, they must post-embryonically develop and maintain germ cells derived from pluripotent cells as they switch from vegetative to sexual reproduction. The complicated mechanisms for controlling the postembryonic reproductive development remain unknown. The planarian Dugesia ryukyuensis can switch from vegetative to sexual reproduction by stimulating bioactive compounds called sex-inducing substances, which are widely conserved in Platyhelminthes, including parasitic flatworms. The two reproductive modes are facilitated by the presence of adult pluripotent stem cells, which generate any type of somatic tissue in the asexual state and produce and maintain hermaphroditic reproductive organs in the sexual state. In this study, using RNA sequencing analysis in experimental sexualization by sex-inducing substances, we identified four essential genes for sexualization. A common feature following the knockdown of the four essential genes was a blockage of testicular differentiation. One of the four essential genes was a gap junction gene, Dr-siri (Dugesia ryukyuensis-sexual induction-related innexin). We suggest that the establishment of a testicular stem cell niche supported by Dr-siri protein is responsible for the breakthrough of dormancy in postembryonic reproductive development in planarian reproductive switching. Our findings suggest that the production of testes might be crucial for even switching from vegetative to sexual reproduction.
(Copyright: © 2025 Kumagai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

The authors have declared that no competing interests exist.