Treffer: MetAP DB and Metal-FP: a database and fingerprint framework for advancing metal-based drug discovery.

Title:
MetAP DB and Metal-FP: a database and fingerprint framework for advancing metal-based drug discovery.
Authors:
López-López E; DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. elopez.lopez@cinvestav.mx.; Department of Chemistry and Graduate Program in Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Section 14-740, 07000, Mexico City, Mexico. elopez.lopez@cinvestav.mx., Medina-Franco JL; DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. medinajl@unam.mx.
Source:
Journal of computer-aided molecular design [J Comput Aided Mol Des] 2025 Dec 03; Vol. 40 (1), pp. 8. Date of Electronic Publication: 2025 Dec 03.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Springer Country of Publication: Netherlands NLM ID: 8710425 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-4951 (Electronic) Linking ISSN: 0920654X NLM ISO Abbreviation: J Comput Aided Mol Des Subsets: MEDLINE
Imprint Name(s):
Publication: Amsterdam : Springer
Original Publication: Leiden, The Netherlands : ESCOM, [c1987-
References:
Yousuf I, Bashir M, Arjmand F, Tabassum S (2021) Advancement of metal compounds as therapeutic and diagnostic metallodrugs: current frontiers and future perspectives. Coord Chem Rev 445:214104. (PMID: 10.1016/j.ccr.2021.214104)
Das B, Gupta P (2024) Multimetallic transition metal complexes: luminescent probes for biomolecule sensing, ion detection, imaging and therapeutic application. Coord Chem Rev 504:215656. (PMID: 10.1016/j.ccr.2024.215656)
Karges J, Stokes RW, Cohen SM (2021) Metal complexes for therapeutic applications. Trends Chem 3:523–534. (PMID: 35966501937410610.1016/j.trechm.2021.03.006)
Frei A, Verderosa AD, Elliott AG, Zuegg J, Blaskovich MA (2023) Metals to combat antimicrobial resistance. Nat Reviews Chem 7:202–224. (PMID: 10.1038/s41570-023-00463-4)
López-López E, Bajorath J, Medina-Franco JL (2020) Informatics for chemistry, biology, and biomedical sciences. J Chem Inf Model 61:26–35. (PMID: 3338261110.1021/acs.jcim.0c01301)
Gulati S, Choudhury A, Mohan G, Katiyar RMPMAK, Kumar S, Varma RS (2023) Metal–organic frameworks (MOFs) as effectual diagnostic and therapeutic tools for cancer. J Mater Chem B 11:6782–6801. (PMID: 3737708210.1039/D3TB00706E)
López-Pérez K, Avellaneda-Tamayo JF, Chen L, López-López E, Juárez-Mercado KE, Medina-Franco JL, Miranda-Quintana RA (2024) Molecular similarity: theory, applications, and perspectives. Artif Intel Chem 2:100077. (PMID: 10.1016/j.aichem.2024.100077)
Yang J, Cai Y, Zhao K, Xie H, Chen X (2022) Concepts and applications of chemical fingerprint for hit and lead screening. Drug Discov Today 27:103356. (PMID: 3611383410.1016/j.drudis.2022.103356)
Gao K, Nguyen DD, Sresht V, Mathiowetz AM, Tu M, Wei GW (2020) Are 2D fingerprints still valuable for drug discovery? Phys Chem Chem Phys 22:8373–8390. (PMID: 32266895722433210.1039/D0CP00305K)
Nisius B, Bajorath J (2009) Molecular fingerprint recombination: generating hybrid fingerprints for similarity searching from different fingerprint types. ChemMedChem: Chem Enabling Drug Discov 4:1859–1863. (PMID: 10.1002/cmdc.200900243)
Orsi M, Reymond JL (2024) One chiral fingerprint to find them all. J Cheminformatics 16:53. (PMID: 10.1186/s13321-024-00849-6)
Boldini D, Ballabio D, Consonni V, Todeschini R, Grisoni F, Sieber SA (2024) Effectiveness of molecular fingerprints for exploring the chemical space of natural products. J Cheminformatics 16:35. (PMID: 10.1186/s13321-024-00830-3)
Capecchi A, Probst D, Reymond JL (2020) One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. J Cheminformatics 12:1–15. (PMID: 10.1186/s13321-020-00445-4)
López-López E, Robles O, Plisson F, Medina-Franco JL (2023) Mapping the structure–activity landscape of non-canonical peptides with MAP4 fingerprinting. Dig Discov 2:1494–1505. (PMID: 10.1039/D3DD00098B)
Fung V, Jia S, Zhang J, Bi S, Yin J, Ganesh P (2022) Atomic structure generation from reconstructing structural fingerprints. Mach Learning: Sci Tech 3:045018.
Wigh DS, Goodman JM, Lapkin AA (2022) A review of molecular representation in the age of machine learning. Wiley Interdisc Rev: Comput Mol Sci 12:e1603.
Barry NP, Sadler PJ (2013) Exploration of the medical periodic table: towards new targets. Chem Commun 49:5106–5131. (PMID: 10.1039/c3cc41143e)
Xu X, Dai F, Mao Y, Zhang K, Qin Y, Zheng J (2023) Metallodrugs in the battle against non-small cell lung cancer: unlocking the potential for improved therapeutic outcomes. Front Pharmacol 14:1242488. (PMID: 377273881050609710.3389/fphar.2023.1242488)
López-López E, Fernández-de Gortari E, Medina-Franco JL (2022) Yes SIR! On the structure–inactivity relationships in drug discovery. Drug Disc Today 27:2353–2362. (PMID: 10.1016/j.drudis.2022.05.005)
Medina-Franco JL, López-López E, Andrade E, Ruiz-Azuara L, Frei A, Guan D, Zuegg J, Blaskovich MA (2022) Bridging informatics and medicinal inorganic chemistry: toward a database of metallodrugs and metallodrug candidates. Drug Disc Today 27:1420–1430. (PMID: 10.1016/j.drudis.2022.02.021)
Knox C, Wilson M, Klinger CM, Franklin M, Oler E, Wilson A, Pon A, Cox J et al (2024) DrugBank 6.0: the drugbank knowledgebase for 2024. Nucleic Acids Res 52:D1265–D1275. (PMID: 3795327910.1093/nar/gkad976)
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q et al (2025) PubChem 2025 update. Nucleic Acids Res 53:D1516–D1525. (PMID: 3955816510.1093/nar/gkae1059)
Landrum G (2013) Rdkit Documentation. Release 1(1–79), 4.
Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N, Kuhn S, Pluskal T, Rojas-Chertó M, Spujuth O, Torrance G, Evelo CT, Guha R, Steinbeck C (2017) The chemistry development kit (CDK) v2. 0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminformatics 9:1–19.
Pavlov D, Rybalkin M, Karulin B, Kozhevnikov M, Savelyev A, Churinov A (2011) Indigo: universal cheminformatics API. J Cheminformatics 3(Suppl 1):P4. (PMID: 10.1186/1758-2946-3-S1-P4)
Beker W, Wołos A, Szymkuć S, Grzybowski BA (2020) Minimal-uncertainty prediction of general drug-likeness based on bayesian neural networks. Nat Mach Intel 2:457–465. (PMID: 10.1038/s42256-020-0209-y)
Ritchie TJ, Macdonald SJ (2014) How drug-like are ‘ugly’drugs: do drug-likeness metrics predict ADME behaviour in humans? Drug Discov Today 19:489–495. (PMID: 2446295610.1016/j.drudis.2014.01.007)
Fricker SP (2007) Metal based drugs: from serendipity to design. Dalton Trans 43:4903–4917. (PMID: 10.1039/b705551j)
Boros E, Dyson PJ, Gasser G (2020) Classification of metal-based drugs according to their mechanisms of action. Chem 6:41–60. (PMID: 3286450310.1016/j.chempr.2019.10.013)
Landrum G (2025) RDKit. http://www.rdkit.org . Accessed 10 January, 2025.
López-López E, Medina-Franco JL (2023) Towards decoding hepatotoxicity of approved drugs through navigation of multiverse and consensus chemical spaces. Biomolecules 13:176. (PMID: 36671561985547010.3390/biom13010176)
López-López E, Hernández-Segura AM, Lara-Cuellar C, Barrientos-Salcedo C, Cerda-García-Rojas CM, Medina-Franco JL (2025) Nat-UV DB: a natural products database underlying of Veracruz-México. F1000Research 14(Chem-Inf.):157.
Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and Valence state information. J Chem Inf Comp Sci 35:1039–1045. (PMID: 10.1021/ci00028a014)
Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comp Sci 42:1273–1280. (PMID: 10.1021/ci010132r)
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754. (PMID: 2042645110.1021/ci100050t)
Dunn TB, López-López E, Kim TD, Medina‐Franco JL, Miranda‐Quintana RA (2023) Exploring activity landscapes with extended similarity: is Tanimoto. enough? Mol Inf 42:2300056. (PMID: 10.1002/minf.202300056)
Kotsiantis SB, Zaharakis ID, Pintelas PE (2006) Machine learning: a review of classification and combining techniques. Artif Int Rev 26:159–190. (PMID: 10.1007/s10462-007-9052-3)
Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20:318–331. (PMID: 2544875910.1016/j.drudis.2014.10.012)
Martinez-Mayorga K, Rosas-Jiménez JG, Gonzalez-Ponce K, López-López E, Neme A, Medina-Franco JL (2024) The pursuit of accurate predictive models of the bioactivity of small molecules. Chem Sci 15:1938–1952. (PMID: 383328171084866410.1039/D3SC05534E)
KNIME Ensemble Learning Wrappers (2025) KNIME. https://hub.knime.com/knime/extensions/org.knime.features.ensembles/latest . Accessed 25 Aug 2025.
Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, Zhu Y, Liu J, Zhang B, Wei GW (2023) Machine learning methods for small data challenges in molecular science. Chem Rev 123:8736–8780. (PMID: 373848161099917410.1021/acs.chemrev.3c00189)
Zhang J, Wang Q, Shen W (2022) Hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using Hyperopt library. Chin J Chem Eng 52:115–125. (PMID: 10.1016/j.cjche.2022.04.004)
Medina-Franco JL, Chávez‐Hernández AL, López‐López E, Saldívar‐González FI (2022) Chemical multiverse: an expanded view of chemical space. Mol Inf 41:2200116. (PMID: 10.1002/minf.202200116)
van der Maaten LJP, Hinton GE (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605.
Orlov AA, Akhmetshin TN, Horvath D, Marcou G, Varnek A (2025) From high dimensions to human insight: exploring dimensionality reduction for chemical space visualization. Mol Inf 44:e202400265. (PMID: 10.1002/minf.202400265)
Sander T, Freyss J, Von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55:460–473. (PMID: 2555888610.1021/ci500588j)
López-López E, Naveja JJ, Medina-Franco JL (2019) DataWarrior: an evaluation of the open-source drug discovery tool. Expert Op Drug Disc 14:335–341. (PMID: 10.1080/17460441.2019.1581170)
Anthony EJ, Bolitho EM, Bridgewater HE, Carter OW, Donnelly JM, Imberti C, Lant EC, Lermyte F, Needham RJ, Palau M, Sadler PJ, Shi H, Wang F-X, Zhang W-Y, Zhang Z (2020) Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci 11:12888–12917. (PMID: 34123239816333010.1039/D0SC04082G)
Andreini C, Cavallaro G, Lorenzini S, Rosato A (2012) MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acids Res 41:D312–D319. (PMID: 23155064353110610.1093/nar/gks1063)
Shi H, Marchi RC, Sadler PJ (2025) Advances in the design of photoactivatable metallodrugs: excited state metallomics. Angew Chem 137:e202423335. (PMID: 10.1002/ange.202423335)
Rodrigues JA, Kiran NS, Chatterjee A, Prajapati BG, Dhas N, Dos Santos AO, de Sousa FF, Souto EB (2024) Metallodrugs: Synthesis, mechanism of action and nanoencapsulation for targeted chemotherapy. Biochem Pharmacol 231:116644. (PMID: 3957770510.1016/j.bcp.2024.116644)
Hassan AU, Sumrra SH, Zafar MN, Nazar MF, Mughal EU, Zafar MN, Iqbal M (2022) New organosulfur metallic compounds as potent drugs: synthesis, molecular modeling, spectral, antimicrobial, drug likeness and DFT analysis. Mol Divers 26:1–22. (PMID: 10.1007/s11030-020-10157-4)
Leeson PD, Bento AP, Gaulton A, Hersey A, Manners EJ, Radoux CJ, Leach AR (2021) Target-based evaluation of drug-like properties and ligand efficiencies. J Med Chem 64:7210–7230. (PMID: 33983732761096910.1021/acs.jmedchem.1c00416)
Lavecchia A (2024) Navigating the frontier of drug-like chemical space with cutting-edge generative AI models. Drug Discov Today 29:104133. (PMID: 3910314410.1016/j.drudis.2024.104133)
Abdou A, Mostafa HM, Abdel-Mawgoud AMM (2022) Seven metal-based bi-dentate NO azocoumarine complexes: synthesis, physicochemical properties, DFT calculations, drug-likeness, in vitro antimicrobial screening and molecular Docking analysis. Inorg Chim Acta 539:121043. (PMID: 10.1016/j.ica.2022.121043)
Lanez E, Zerrouk L, Bechki L, Lanez T, Adaika A, Zegheb N, Nesba K (2024) Synthesis, molecular docking, drug-likeness analysis, and ADMET prediction of nickel and zinc tetraphenyl‐porphyrin complexes as possible antioxidant agents. J Chin Chem Soc 71:1211–1229. (PMID: 10.1002/jccs.202400167)
Bharathi S, Mahendiran D, Ahmed S, Rahiman AK (2023) In vitro anti-proliferative, and in Silico ribonucleotide reductase and pharmacokinetics studies of heteroleptic silver (I), nickel (II) and copper (II) complexes of 4-methyl-3-thiosemicarbazones and ibuprofen. J Trace Elem Med Biol 79:127211. (PMID: 3726306210.1016/j.jtemb.2023.127211)
Kanaoujiya R, Sahu DK, Shankar V, Srivastava S (2022) Synthesis, characterization of Ru (III) macrocyclic complex with hirshfeld analysis and drug likeness study. Materials Today: Proceedings 62:3497–3501.
Bourouai MA, Bouchoucha A, Larbi KS, Cosnier S, Djebbar S (2024) Novel Mn (II) and Cu (II) metal complexes with Sulfa drug-derived ligands as potent antimicrobial and anticancer agents: in vitro studies, ADMET profile and molecular Docking. Polyhedron 253:116914. (PMID: 10.1016/j.poly.2024.116914)
Shahraki S, Shiri F, Saeidifar M (2018) Synthesis, characterization, in Silico ADMET prediction, and protein binding analysis of a novel zinc (II) Schiff-base complex: application of multi-spectroscopic and computational techniques. J Biomol Struct Dynamics 36:1666–1680. (PMID: 10.1080/07391102.2017.1334595)
Belkhir-Talbi D, Makhloufi-Chebli M, Terrachet-Bouaziz S, Hikem-Oukacha D, Ghemmit N, Ismaili L, Silva AMS, Hamdi M (2019) Synthesis, characterization, theoretical studies, ADMET and drug-Likeness analysis: electrochemical and biological activities of metal complexes of 3-(2-hydroxybenzoyl)-2H-chromen-2-one. J Mol Struct 1179:495–505. (PMID: 10.1016/j.molstruc.2018.11.035)
Alka, Singh J, Kumari P, Jain P (2024) Synthesis, Characterization, Biological, ADMET, and molecular Docking studies of transition metal complexes of aminopyridine schiff base derivative. Chem Biodivers 21:e202401101. (PMID: 10.1002/cbdv.202401101)
Maddikayala S, Bengi K, Malkhed V, Pulimamidi SR In Silico Docking Studies, Properties ADMET (2025) DNA Interaction, and Biological and in vivo Anti-Inflammatory Studies of Schiff Base Metal Complexes Derived From o‐Hydroxyacetophenone. Applied Organometallic Chem 39:e7949.
Abdel-Rahman LH, Abdelghani AA, AlObaid AA, El-ezz DA, Warad I, Shehata MR, Abdalla EM (2023) Novel bromo and methoxy substituted schiff base complexes of Mn (II), Fe (III), and cr (III) for anticancer, antimicrobial, docking, and ADMET studies. Scient Rep 13:3199. (PMID: 10.1038/s41598-023-29386-2)
López-Pérez K, Kim TD, Miranda-Quintana RA (2024) iSIM: instant similarity. Digit Discov 3:1160–1171. (PMID: 388730321116770010.1039/D4DD00041B)
Nguyen-Vo TH, Teesdale-Spittle P, Harvey JE, Nguyen BP (2024) Molecular representations in bio-cheminformatics. Memetic Comput 16:519–536. (PMID: 10.1007/s12293-024-00414-6)
Sun W, Zheng Y, Yang K, Zhang Q, Shah AA, Wu Z, Sun Y, Feng L, Chen D, Xiao Z, Lu S, Sun K (2019) Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. Sci Adv 5:eaay4275. (PMID: 31723607683993810.1126/sciadv.aay4275)
Matito-Martos I, Moghadam PZ, Li A, Colombo V, Navarro JA, Calero S, Fairen-Jimenez D (2018) Discovery of an optimal porous crystalline material for the capture of chemical warfare agents. Chem Mater 30:4571–4579. (PMID: 10.1021/acs.chemmater.8b00843)
Ni J, Li J, Li S, Zheng H, Ming Z, Li L, Li H, Zhang S, Zhao Y, Liang H, Qiao Z (2024) Molecular fingerprint and machine learning enhance high-performance MOFs for mustard gas removal. Iscience 27:110042. (PMID: 388838111117719510.1016/j.isci.2024.110042)
Ming Z, Zhang M, Zhang S, Li X, Yan X, Guan K, Li Y, Peng Y, Li J, Li H, Zhao Y, Qiao Z (2025) A Multi-Method Approach to Analyzing MOFs for Chemical Warfare Simulant Capture: Molecular Simulation, Machine Learning, and Molecular Fingerprints. Nanomaterials 15:183.
López-Pérez K, López-López E, Medina-Franco JL, Miranda-Quintana RA (2023) Sampling and mapping chemical space with extended similarity indices. Molecules 28:6333. (PMID: 376871621048902010.3390/molecules28176333)
Medina-Franco JL, Rodríguez-Pérez JR, Cortés-Hernández HF, López-López E (2024) Rethinking the ‘best method’ paradigm: the effectiveness of hybrid and multidisciplinary approaches in chemoinformatics. Artif Intel Life Sci 6:100117.
Prada Gori DN, Llanos MA, Bellera CL, Talevi A, Alberca LN (2022) iRaPCA and somoc: development and validation of web applications for new approaches for the clustering of small molecules. J Chem Inf Model 62:2987–2998. (PMID: 3568752310.1021/acs.jcim.2c00265)
Mo Y, Guan Y, Verma P, Guo J, Fortunato ME, Lu Z, Coley CW, Jensen KF (2021) Evaluating and clustering retrosynthesis pathways with learned strategy. Chem Sci 12:1469–1478. (PMID: 10.1039/D0SC05078D)
Hadipour H, Liu C, Davis R, Cardona ST, Hu P (2022) Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means. BMC Bioinformatics 23(Suppl 4):132. (PMID: 35428173901193510.1186/s12859-022-04667-1)
Van Tilborg D, Alenicheva A, Grisoni F Exposing the limitations of molecular machine learning with activity cliffs. J Chem Inf Model 62:5938–5951.
Zagidullin B, Wang Z, Guan Y, Pitkänen E, Tang J (2021) Comparative analysis of molecular fingerprints in prediction of drug combination effects. Brief Bioinform 22:bbab291. (PMID: 34401895857499710.1093/bib/bbab291)
Oliveira TAD, Silva MPD, Maia EHB, Silva AMD, Taranto AG (2023) Virtual screening algorithms in drug discovery: a review focused on machine and deep learning methods. Drugs Drug Candidates 2:311–334. (PMID: 10.3390/ddc2020017)
Gaytán-Hernández D, Chávez-Hernández AL, López-López E, Miranda-Salas J, Saldívar-González FI, Medina-Franco JL (2023) Art driven by visual representations of chemical space. J Cheminformatics 15:100. (PMID: 10.1186/s13321-023-00770-4)
Bamidele EA, Ijaola AO, Bodunrin M, Ajiteru O, Oyibo AM, Makhatha E, Asmatulu E (2022) Discovery and prediction capabilities in metal-based nanomaterials: an overview of the application of machine learning techniques and some recent advances. Adv Eng Inf 52:101593. (PMID: 10.1016/j.aei.2022.101593)
Pouyanfar N, Ahmadi M, Ayyoubzadeh SM, Ghorbani-Bidkorpeh F (2024) Drug delivery system tailoring via metal-organic framework property prediction using machine learning: a disregarded approach. Mater Today Commun 38:107938. (PMID: 10.1016/j.mtcomm.2023.107938)
Abeng FE, Anadebe VC (2023) Combined electrochemical, DFT/MD-simulation and hybrid machine learning based on ANN-ANFIS models for prediction of doxorubicin drug as corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. Comput Theoretical Chem 1229:114334. (PMID: 10.1016/j.comptc.2023.114334)
Jeong J, Park T, Song J, Kang S, Won J, Han J, Min K (2024) Integrating data mining and natural Language processing to construct a melting point database for organometallic compounds. J Chem Inf Model 64:7432–7446. (PMID: 3935237510.1021/acs.jcim.4c01254)
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754. (PMID: 2042645110.1021/ci100050t)
Gao K, Nguyen DD, Sresht V, Mathiowetz AM, Tu M, Wei GW (2020) Are 2D fingerprints still valuable for drug discovery? Phys Chem Chem Phys 22(16):8373–8390. (PMID: 32266895722433210.1039/D0CP00305K)
Huang R, Wallqvist A, Covell DG (2005) Anticancer metal compounds in nci’s tumor-screening database: putative mode of action. Biochem Pharmacol 69:1009–1039. (PMID: 1576353910.1016/j.bcp.2005.01.001)
Gibaldi M, Kapeliukha A, White A, Luo J, Mayo RA, Burner J, Woo TK (2025) MOSAEC-DB: a comprehensive database of experimental metal–organic frameworks with verified chemical accuracy suitable for molecular simulations. Chem Sci 16:4085–4100. (PMID: 398983101178428210.1039/D4SC07438F)
Riccardi L, Genna V, De Vivo M (2018) Metal–ligand interactions in drug design. Nat Rev Chem 2:100–112. (PMID: 10.1038/s41570-018-0018-6)
Palermo G, Spinello A, Saha A, Magistrato A (2021) Frontiers of metal-coordinating drug design. Exp Op Drug Discov 16:497–511. (PMID: 10.1080/17460441.2021.1851188)
Mandal B, Chung JS, Kang SG (2017) Exploring the geometric, magnetic and electronic properties of Hofmann MOFs for drug delivery. Physic Chem Chem Physic 19:31316–31324. (PMID: 10.1039/C7CP04831A)
Meggers E (2007) Exploring biologically relevant chemical space with metal complexes. Curr Op Chem Biol 11:287–292. (PMID: 10.1016/j.cbpa.2007.05.013)
Luo Z, Castleman AW Jr, Khanna SN (2016) Reactivity of metal clusters. Chem Rev 116:14456–14492. (PMID: 2796026310.1021/acs.chemrev.6b00230)
Gallegos LC, Luchini G, John PC, Kim S, Paton RS (2021) Importance of engineered and learned molecular representations in predicting organic reactivity, selectivity, and chemical properties. Acc Chem Res 54:827–836. (PMID: 3353453410.1021/acs.accounts.0c00745)
Guo Y, Wang M, Zhu Q, Xiao D, Ma D (2022) Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat Catal 5:766–776. (PMID: 10.1038/s41929-022-00839-7)
Blanke G, Brammer J, Baljozovic D, Khan NU, Lange F, Bänsch F, Tovee CA, Schatzschneider U, Hartshotn R, Herres-Pawlis S (2025) Making the InChI FAIR and sustainable while moving to inorganics. Faraday Discuss 256:503–519. (PMID: 3935595810.1039/D4FD00145A)
Nandy A, Duan C, Taylor MG, Liu F, Steeves AH, Kulik HJ (2021) Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem Rev 121(16):9927–10000. (PMID: 3426019810.1021/acs.chemrev.1c00347)
Sharma P, Ranjan P, Chakraborty T (2024) Applications of conceptual density functional theory in reference to quantitative structure–activity/property relationship. Mol Phys, 122(23), e2331620.
Li A, Bueno-Perez R, Wiggin S, Fairen-Jimenez D (2020) Enabling efficient exploration of metal–organic frameworks in the Cambridge structural database. CrystEngComm 22:7152–7161. (PMID: 10.1039/D0CE00299B)
Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AG, Wood PA, Ward SC, Fairen-Jimenez D (2017) Development of a Cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future. Chem Mater 29:2618–2625. (PMID: 10.1021/acs.chemmater.7b00441)
Ward L, Dunn A, Faghaninia A, Zimmermann NE, Bajaj S, Wang Q, Montoya J, Chen J, Bystrom K, Dylla M, Chard K, Asta M, Persson KA, Snyder J, Foster I, Jain A (2018) Matminer: an open source toolkit for materials data mining. Comput Mater Sci 152:60–69. (PMID: 10.1016/j.commatsci.2018.05.018)
Shin HK (2020) Electron configuration-based neural network model to predict physicochemical properties of inorganic compounds. RSC Adv 1055:33268–33278. (PMID: 10.1039/D0RA05873D)
Li J, Wang C, Yue L, Chen F, Cao X, Wang Z (2022) Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: a review. Ecotoxicol Environ Saf 243:113955. (PMID: 3596119910.1016/j.ecoenv.2022.113955)
Grant Information:
IG200124 Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT)
Contributed Indexing:
Keywords: Chemical space; Chemoinformatics; Database; Metallodrugs; Molecular representation; Molecular similarity; Virtual screening
Substance Nomenclature:
0 (Metals)
Entry Date(s):
Date Created: 20251202 Date Completed: 20251203 Latest Revision: 20251202
Update Code:
20251203
DOI:
10.1007/s10822-025-00714-0
PMID:
41331400
Database:
MEDLINE

Weitere Informationen

Metal-based drugs have historically been used for different therapeutic and diagnostic applications. The need to advance metal-based drugs and drug candidates has contributed to the development of computational strategies to handle metal-containing chemical structures for drug discovery applications. However, most of them have limitations related to their computational cost, scalability, capacity to be used in different chemical contexts, and data accessibility. This study introduces the first open-access metal-based approved drug database (MetAP DB) with FDA-approved drugs across various therapeutic applications and clinical diagnostic outcomes. It also introduces the first versions of molecular metal-based fingerprints (Metal-FP) representations proposed as a general protocol for representing metal-based compounds. The proposed fingerprints encode chemical data related to the presence of metals, their valence and oxidation states, the presence of specific functional groups, and the atom connectivity of metal-based compounds. The fingerprints Metal-FP2 and Metal-FP3 showed highlighting the effectiveness in differentiating metal-based compounds according to distance metrics, data visualizations, random forest, and logistic regression algorithms.
(© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)

Declarations. Conflict of interest: The authors declare no competing financial interest.