Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: ReHA-Net: a ReVIN-hybrid attention network with multiscale convolution for robust EEG artifact removal in brain-computer interfaces.

Title:
ReHA-Net: a ReVIN-hybrid attention network with multiscale convolution for robust EEG artifact removal in brain-computer interfaces.
Authors:
Francis N; Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India. nf5767@srmist.edu.in., Vadivu G; Department of Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
Source:
Scientific reports [Sci Rep] 2025 Dec 04; Vol. 16 (1), pp. 178. Date of Electronic Publication: 2025 Dec 04.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
Comput Biol Med. 2024 Jul;177:108626. (PMID: 38810475)
J Neural Eng. 2022 Apr 22;19(2):. (PMID: 35378524)
Neuroimage. 2022 Nov;263:119586. (PMID: 36031182)
Neuroscience. 2025 Apr 19;572:155-170. (PMID: 40024428)
J Neurosci Methods. 2021 Jan 1;347:108961. (PMID: 33038417)
Sensors (Basel). 2025 Jan 03;25(1):. (PMID: 39797022)
Sci Rep. 2021 Sep 10;11(1):18048. (PMID: 34508120)
Sensors (Basel). 2024 Mar 12;24(6):. (PMID: 38544079)
J Neural Eng. 2021 Oct 14;18(5):. (PMID: 34596046)
Front Neurosci. 2024 Jan 24;17:1258024. (PMID: 38328554)
IEEE J Biomed Health Inform. 2025 Oct;29(10):7175-7185. (PMID: 40456080)
Sci Rep. 2025 Jun 4;15(1):19532. (PMID: 40467835)
IEEE J Biomed Health Inform. 2024 May;28(5):2662-2673. (PMID: 38277252)
J Neural Eng. 2022 Feb 28;19(1):. (PMID: 35147512)
IEEE J Biomed Health Inform. 2023 Mar;27(3):1283-1294. (PMID: 37015612)
IEEE Trans Neural Syst Rehabil Eng. 2023;31:646-656. (PMID: 37015688)
Sci Rep. 2021 Oct 12;11(1):20192. (PMID: 34642403)
Sci Rep. 2024 Jun 19;14(1):14119. (PMID: 38898069)
Comput Biol Med. 2022 Dec;151(Pt A):106248. (PMID: 36343405)
IEEE J Transl Eng Health Med. 2022 Jan 18;10:4900209. (PMID: 35356539)
IEEE J Biomed Health Inform. 2025 Jun;29(6):3930-3941. (PMID: 37220036)
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1645-1666. (PMID: 33465029)
Neural Netw. 2025 May;185:107139. (PMID: 39827834)
Neural Netw. 2024 Nov;179:106568. (PMID: 39089152)
J Neural Eng. 2015 Jun;12(3):031001. (PMID: 25834104)
Med Biol Eng Comput. 2001 Mar;39(2):237-48. (PMID: 11361251)
Bioengineering (Basel). 2023 May 10;10(5):. (PMID: 37237649)
Trends Neurosci. 2017 Apr;40(4):208-218. (PMID: 28314445)
Contributed Indexing:
Keywords: Artifact suppression; Attention mechanisms; Biomedical signal processing; Computational intelligence; Deep learning; Electroencephalography denoising; Reversible instance normalization
Entry Date(s):
Date Created: 20251204 Date Completed: 20260103 Latest Revision: 20260106
Update Code:
20260106
PubMed Central ID:
PMC12764841
DOI:
10.1038/s41598-025-28855-0
PMID:
41345432
Database:
MEDLINE

Weitere Informationen

Electroencephalography (EEG) is a non-invasive technique for monitoring brain activity, but its signal quality is frequently degraded by artifacts from ocular movements, muscle activity, and environmental noise. ReHA-Net is a deep learning framework for robust EEG denoising, combining a U-Net-based encoder-decoder with three core modules. (1) Hybrid Attention integrates temporal, spatial, and frequency attention to emphasize neural patterns while suppressing structured noise. (2) The Multiscale Separable Convolution (MSC) block employs dilated and parallel depth-wise separable convolutions with varying kernel sizes to capture both short-term and long-term temporal dependencies. (3) Reversible Instance Normalization (ReVIN) enhances cross-subject generalization while retaining subject-specific features. The model trains on an enhanced EEGdenoiseNet dataset with a wider signal-to-noise ratio range, combined artifact conditions, and tailored normalization strategies. ReHA-Net achieved strong denoising performance, with a PSNR of 27.10 dB, an SNR of about 17.06 dB, and a correlation coefficient of 0.976 with clean signals and a relative root mean square error (RRMSE) of 0.165. These outcomes demonstrate effective artifact reduction while maintaining neural activity, highlighting its suitability as a preprocessing step for tasks such as seizure detection, imagined speech decoding, and cognitive state monitoring.
(© 2025. The Author(s).)

Declarations. Competing interests: The authors declare no competing interests.