Treffer: ReHA-Net: a ReVIN-hybrid attention network with multiscale convolution for robust EEG artifact removal in brain-computer interfaces.
J Neural Eng. 2022 Apr 22;19(2):. (PMID: 35378524)
Neuroimage. 2022 Nov;263:119586. (PMID: 36031182)
Neuroscience. 2025 Apr 19;572:155-170. (PMID: 40024428)
J Neurosci Methods. 2021 Jan 1;347:108961. (PMID: 33038417)
Sensors (Basel). 2025 Jan 03;25(1):. (PMID: 39797022)
Sci Rep. 2021 Sep 10;11(1):18048. (PMID: 34508120)
Sensors (Basel). 2024 Mar 12;24(6):. (PMID: 38544079)
J Neural Eng. 2021 Oct 14;18(5):. (PMID: 34596046)
Front Neurosci. 2024 Jan 24;17:1258024. (PMID: 38328554)
IEEE J Biomed Health Inform. 2025 Oct;29(10):7175-7185. (PMID: 40456080)
Sci Rep. 2025 Jun 4;15(1):19532. (PMID: 40467835)
IEEE J Biomed Health Inform. 2024 May;28(5):2662-2673. (PMID: 38277252)
J Neural Eng. 2022 Feb 28;19(1):. (PMID: 35147512)
IEEE J Biomed Health Inform. 2023 Mar;27(3):1283-1294. (PMID: 37015612)
IEEE Trans Neural Syst Rehabil Eng. 2023;31:646-656. (PMID: 37015688)
Sci Rep. 2021 Oct 12;11(1):20192. (PMID: 34642403)
Sci Rep. 2024 Jun 19;14(1):14119. (PMID: 38898069)
Comput Biol Med. 2022 Dec;151(Pt A):106248. (PMID: 36343405)
IEEE J Transl Eng Health Med. 2022 Jan 18;10:4900209. (PMID: 35356539)
IEEE J Biomed Health Inform. 2025 Jun;29(6):3930-3941. (PMID: 37220036)
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1645-1666. (PMID: 33465029)
Neural Netw. 2025 May;185:107139. (PMID: 39827834)
Neural Netw. 2024 Nov;179:106568. (PMID: 39089152)
J Neural Eng. 2015 Jun;12(3):031001. (PMID: 25834104)
Med Biol Eng Comput. 2001 Mar;39(2):237-48. (PMID: 11361251)
Bioengineering (Basel). 2023 May 10;10(5):. (PMID: 37237649)
Trends Neurosci. 2017 Apr;40(4):208-218. (PMID: 28314445)
Weitere Informationen
Electroencephalography (EEG) is a non-invasive technique for monitoring brain activity, but its signal quality is frequently degraded by artifacts from ocular movements, muscle activity, and environmental noise. ReHA-Net is a deep learning framework for robust EEG denoising, combining a U-Net-based encoder-decoder with three core modules. (1) Hybrid Attention integrates temporal, spatial, and frequency attention to emphasize neural patterns while suppressing structured noise. (2) The Multiscale Separable Convolution (MSC) block employs dilated and parallel depth-wise separable convolutions with varying kernel sizes to capture both short-term and long-term temporal dependencies. (3) Reversible Instance Normalization (ReVIN) enhances cross-subject generalization while retaining subject-specific features. The model trains on an enhanced EEGdenoiseNet dataset with a wider signal-to-noise ratio range, combined artifact conditions, and tailored normalization strategies. ReHA-Net achieved strong denoising performance, with a PSNR of 27.10 dB, an SNR of about 17.06 dB, and a correlation coefficient of 0.976 with clean signals and a relative root mean square error (RRMSE) of 0.165. These outcomes demonstrate effective artifact reduction while maintaining neural activity, highlighting its suitability as a preprocessing step for tasks such as seizure detection, imagined speech decoding, and cognitive state monitoring.
(© 2025. The Author(s).)
Declarations. Competing interests: The authors declare no competing interests.