Treffer: Causal network analysis of omics data using prior knowledge databases.

Title:
Causal network analysis of omics data using prior knowledge databases.
Authors:
Svinin G; Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg., Glaab E; Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7, avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
Source:
Briefings in bioinformatics [Brief Bioinform] 2025 Nov 01; Vol. 26 (6).
Publication Type:
Journal Article; Systematic Review
Language:
English
Journal Info:
Publisher: Oxford University Press Country of Publication: England NLM ID: 100912837 Publication Model: Print Cited Medium: Internet ISSN: 1477-4054 (Electronic) Linking ISSN: 14675463 NLM ISO Abbreviation: Brief Bioinform Subsets: MEDLINE
Imprint Name(s):
Publication: Oxford : Oxford University Press
Original Publication: London ; Birmingham, AL : H. Stewart Publications, [2000-
References:
Genome Biol. 2017 May 5;18(1):83. (PMID: 28476144)
Nucleic Acids Res. 2023 Jan 6;51(D1):D1539-D1548. (PMID: 36370099)
Nucleic Acids Res. 2024 Jan 5;52(D1):D640-D646. (PMID: 37971328)
Brief Bioinform. 2016 May;17(3):440-52. (PMID: 26141830)
BMC Bioinformatics. 2014 Jul 11;15:238. (PMID: 25015298)
Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21. (PMID: 21062823)
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. (PMID: 16199517)
Cell Syst. 2016 Nov 23;3(5):496-499.e2. (PMID: 27863956)
Nucleic Acids Res. 2025 Jan 6;53(D1):D543-D553. (PMID: 39494541)
Genome Biol. 2019 Oct 9;20(1):203. (PMID: 31597578)
Front Genet. 2021 Apr 30;12:651812. (PMID: 33995486)
Brief Bioinform. 2024 Sep 23;25(6):. (PMID: 39325460)
Protein Sci. 2022 Jan;31(1):8-22. (PMID: 34717010)
Nat Genet. 2007 Oct;39(10):1181-6. (PMID: 17898773)
Mol Neurobiol. 2019 Aug;56(8):5436-5455. (PMID: 30612333)
BMC Bioinformatics. 2016 Aug 24;17(1):318. (PMID: 27553489)
Nucleic Acids Res. 2002 Jan 1;30(1):207-10. (PMID: 11752295)
Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20. (PMID: 25514926)
FEBS Lett. 2009 Feb 18;583(4):597-606. (PMID: 19167383)
Leukemia. 2023 Feb;37(2):288-297. (PMID: 36509894)
Cell Death Dis. 2016 Jan 14;7:e2040. (PMID: 26775695)
Cell Rep Med. 2024 Nov 19;5(11):101804. (PMID: 39486420)
Nat Genet. 2016 Aug;48(8):838-47. (PMID: 27322546)
Nucleic Acids Res. 2007 Jan;35(Database issue):D747-50. (PMID: 17132828)
Drug Discov Today. 2018 Mar;23(3):626-635. (PMID: 29294361)
Genome Biol. 2025 Feb 03;26(1):19. (PMID: 39901160)
Genome Biol. 2024 Oct 3;25(1):254. (PMID: 39363244)
Int J Evid Based Healthc. 2015 Sep;13(3):141-6. (PMID: 26134548)
NPJ Syst Biol Appl. 2024 Aug 23;10(1):95. (PMID: 39179556)
Sci Adv. 2022 Oct 14;8(41):eabn8367. (PMID: 36223459)
Bioinformatics. 2014 Feb 15;30(4):523-30. (PMID: 24336805)
Neurobiol Aging. 2021 Jun;102:178-187. (PMID: 33773368)
PLoS Comput Biol. 2025 Sep 16;21(9):e1013300. (PMID: 40956863)
Brief Bioinform. 2022 Sep 20;23(5):. (PMID: 36088548)
Brief Bioinform. 2013 Jul;14(4):469-90. (PMID: 22851511)
NAR Genom Bioinform. 2023 Dec 13;5(4):lqad106. (PMID: 38094309)
Nucleic Acids Res. 2024 Jan 5;52(D1):D672-D678. (PMID: 37941124)
Bioinformatics. 2012 Apr 15;28(8):1114-21. (PMID: 22355083)
Genome Biol. 2020 Jan 16;21(1):12. (PMID: 31948481)
Nucleic Acids Res. 2023 Jan 6;51(D1):D631-D637. (PMID: 36243968)
PLoS One. 2013 Dec 06;8(12):e81148. (PMID: 24324667)
Bioinformatics. 2024 Sep 1;40(Suppl 2):ii87-ii97. (PMID: 39230691)
PeerJ. 2020 Sep 22;8:e9954. (PMID: 33024631)
Chem Res Toxicol. 2020 Oct 19;33(10):2550-2564. (PMID: 32638588)
Nucleic Acids Res. 2016 Jan 4;44(D1):D463-70. (PMID: 26467476)
Mol Syst Biol. 2025 Jan;21(1):1-29. (PMID: 39653848)
Nucleic Acids Res. 2011 Jan;39(Database issue):D28-31. (PMID: 20972220)
Trends Pharmacol Sci. 2022 Feb;43(2):136-150. (PMID: 34895945)
Nucleic Acids Res. 2000 Jan 1;28(1):27-30. (PMID: 10592173)
BMC Bioinformatics. 2019 Sep 3;20(1):451. (PMID: 31481014)
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D655-8. (PMID: 16381952)
Mol Syst Biol. 2022 Jul;18(7):e11036. (PMID: 35880747)
Comput Biol Med. 2024 Aug;178:108690. (PMID: 38879931)
NPJ Syst Biol Appl. 2019 Nov 11;5:40. (PMID: 31728204)
Mol Genet Genomic Med. 2022 Oct;10(10):e2055. (PMID: 36087049)
Mol Psychiatry. 2019 Mar;24(3):431-446. (PMID: 30283032)
BMC Bioinformatics. 2013 Nov 23;14:340. (PMID: 24266983)
Brief Bioinform. 2021 Jul 20;22(4):. (PMID: 33378765)
Grant Information:
C24/BM/18865990/AsynIntact Luxembourg National Research Fund; INTER/JPND23/17999421/AD-PLCG2 Luxembourg National Research Fund; INTER/22/17104370/RECAST Luxembourg National Research Fund; INTER/EJP RD22/17027921/PreDYT Luxembourg National Research Fund
Contributed Indexing:
Keywords: bioinformatics workflows; causal reasoning; molecular networks; network analysis; prior knowledge; systems biology
Entry Date(s):
Date Created: 20251205 Date Completed: 20251205 Latest Revision: 20251218
Update Code:
20251219
PubMed Central ID:
PMC12703490
DOI:
10.1093/bib/bbaf654
PMID:
41348604
Database:
MEDLINE

Weitere Informationen

Identifying causal relationships in omics data is essential for understanding underlying biological processes. However, detecting these relationships remains challenging due to the complexity of molecular networks and observational data limitations. To guide researchers, we conducted a systematic literature review of data-driven causal omics analysis methods that use structured prior knowledge from regulatory and interaction databases. We grouped methods into three approaches based on the extent of prior knowledge integration: regulon-level (direct regulator-target links, straightforward interpretation, but with the risk of oversimplification), flow-level (multi-step propagation from regulators to targets, broader mechanism explanation, but lacking uncertainty modeling), and network-level (system-wide interactions and crosstalk, most comprehensive, but with increased computational complexity and requiring particularly careful interpretation). These methods have demonstrated utility across diverse applications, including identification of therapeutic targets in acute myeloid leukemia, elucidation of mechanisms in IgA nephropathy, and detection of regulatory perturbations in Alzheimer's disease. We discuss the strengths, limitations, and representative use cases of each approach, and address general limitations and outline future research directions. This review serves as a practical guide for the entire analysis process, from selecting prior knowledge databases (PKDBs) to choosing and applying causal analysis methods for different research questions.
(© The Author(s) 2025. Published by Oxford University Press.)