Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Integrating active brain-computer interfaces (aBCIs) with passive BCIs (pBCIs) under different frustration levels.

Title:
Integrating active brain-computer interfaces (aBCIs) with passive BCIs (pBCIs) under different frustration levels.
Authors:
Gao X; Bath Institute for the Augmented Human, University of Bath, Bath, UK., Lin H; Southern University of Science and Technology, Shenzhen, Guangdong, PR China., Wu X; Bath Institute for the Augmented Human, University of Bath, Bath, UK., Zhang D; Bath Institute for the Augmented Human, University of Bath, Bath, UK. D.Zhang@bath.ac.uk.
Source:
Scientific reports [Sci Rep] 2025 Dec 05; Vol. 16 (1), pp. 599. Date of Electronic Publication: 2025 Dec 05.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
Imprint Name(s):
Original Publication: London : Nature Publishing Group, copyright 2011-
References:
Sensors (Basel). 2023 Nov 23;23(23):. (PMID: 38067725)
Med Eng Phys. 2007 Jan;29(1):48-53. (PMID: 16517206)
Psychophysiology. 2020 May;57(5):e13554. (PMID: 32108954)
Front Hum Neurosci. 2015 Jun 02;9:308. (PMID: 26082705)
IEEE J Biomed Health Inform. 2025 May;29(5):3343-3355. (PMID: 40031268)
Nat Rev Neurosci. 2004 Jun;5(6):483-94. (PMID: 15152198)
Prog Neurobiol. 2004 Apr;72(5):341-72. (PMID: 15157726)
Neuroimage. 2009 Apr 1;45(2):319-32. (PMID: 19110062)
IEEE Trans Biomed Eng. 2017 Jul;64(7):1431-1436. (PMID: 28436837)
Sensors (Basel). 2023 Jun 28;23(13):. (PMID: 37447849)
Br J Clin Pharmacol. 2004 Jun;57(6):695-713. (PMID: 15151515)
Neurosci Biobehav Rev. 2007;31(3):377-95. (PMID: 17145079)
Hippocampus. 2005;15(6):739-49. (PMID: 16015622)
Front Neurosci. 2010 Sep 07;4:. (PMID: 20877434)
Int J Psychophysiol. 2006 Nov;62(2):212-23. (PMID: 16426692)
Sensors (Basel). 2022 Nov 22;22(23):. (PMID: 36501753)
Front Psychiatry. 2024 Jan 10;14:1301143. (PMID: 38268561)
Arch Clin Neuropsychol. 2016 Feb;31(1):112-22. (PMID: 26663825)
Neuroimage. 2020 Oct 1;219:117044. (PMID: 32534963)
Neuroimage. 2013 Oct 15;80:62-79. (PMID: 23684880)
Neurosci Bull. 2023 Sep;39(9):1426-1438. (PMID: 36995569)
J Abnorm Psychol. 1978 Feb;87(1):49-74. (PMID: 649856)
J Neural Eng. 2018 Oct;15(5):056013. (PMID: 29932424)
J Nurs Meas. 2009;17(2):105-13. (PMID: 19711709)
Front Robot AI. 2020 Oct 02;7:125. (PMID: 33501291)
J Neural Eng. 2021 May 05;18(4):. (PMID: 33862607)
Trends Cogn Sci. 2000 Jun;4(6):215-222. (PMID: 10827444)
Psychophysiology. 2023 Jun;60(6):e14275. (PMID: 36808118)
Science. 2012 Oct 5;338(6103):68-72. (PMID: 23042884)
Brain Sci. 2023 Nov 21;13(12):. (PMID: 38137058)
J Neuroeng Rehabil. 2010 Jul 27;7:34. (PMID: 20659350)
J Neural Eng. 2020 Jan 06;17(1):016020. (PMID: 31683268)
Int J Psychophysiol. 2001 Jan;39(2-3):241-8. (PMID: 11163901)
Comput Biol Med. 2018 Dec 1;103:24-33. (PMID: 30336362)
Contributed Indexing:
Keywords: Active BCI; Adaptive BCI; Electroencephalography; Frustration; Passive BCI
Entry Date(s):
Date Created: 20251205 Date Completed: 20260106 Latest Revision: 20260109
Update Code:
20260109
PubMed Central ID:
PMC12775139
DOI:
10.1038/s41598-025-30168-1
PMID:
41350592
Database:
MEDLINE

Weitere Informationen

The mental state of the users can significantly affect the performance of active brain-computer interfaces (aBCIs). In this work, we aim to adopt passive BCIs (pBCIs) to measure a typical mental state, frustration, which is much relevant to aBCIs. A novel paradigm has been developed that combines both aBCIs and pBCIs under different frustration levels of users. The aBCI in this work is based on classic binary motor imagery (MI). In experiments, a new strategy was implemented that uses visual feedback to induce different levels of frustration. The electroencephalography (EEG) data collected were used for both aBCIs and pBCIs. The pBCI was utilized to assess the frustration level during the aBCI tasks, and the aBCI classification models for different levels of frustration were trained. For pBCI, the filter bank common spatial pattern (FBCSP) feature extraction and support vector machine (SVM) classification were utilized to classify three (i.e., low, moderate, high) frustration levels. For aBCI, the same method (FBCSP+SVM) was used to classify left versus right MI. We also aim to improve the performance of aBCIs in such conditions, so we developed two new methods to incorporate the pBCI results to adapt three MI classifiers to the varying states of frustration. Compared to the conventional approach of directly classifying MI tasks without considering frustration, the two proposed methods increased the mean classification accuracy by 7.40% and 8.62%, respectively. (Compared with the commonly used non-emotional discrimination data, the results are improved by 4.56% and 5.87% respectively.) Within the scope of non-invasive EEG and MI-based aBCI, this study provides, to our knowledge, an initial integrated demonstration in which a frustration-level classifier (pBCI) is trained and then used to adapt MI decoding (aBCI). It should not be taken as a claim of originality beyond this context. Starting from "user subjective perception", this paper rises to the engineering level of "objective frustration recognition and classification model adaptation", and makes a contribution to the depth of EEG data analysis and methodological integrity.
(© 2025. Crown.)

Declarations. Competing interests: The authors declare no competing interests.