Treffer: Comparison of Classifier Calibration Schemes for Movement Intention Detection in Individuals with Cerebral Palsy for Inducing Plasticity with Brain-Computer Interfaces.
Sci Rep. 2019 May 9;9(1):7134. (PMID: 31073142)
Nat Rev Neurol. 2015 Jul;11(7):390-400. (PMID: 26077839)
Clin Neurophysiol. 2002 Jun;113(6):767-91. (PMID: 12048038)
Med Biol Eng Comput. 2019 Nov;57(11):2347-2357. (PMID: 31522355)
Brain Comput Interfaces (Abingdon). 2024 May 4;11(3):87-97. (PMID: 39355516)
Front Hum Neurosci. 2024 Apr 03;18:1346050. (PMID: 38633751)
IEEE Trans Neural Syst Rehabil Eng. 2012 Jul;20(4):595-604. (PMID: 22547461)
Front Neurosci. 2010 Sep 07;4:. (PMID: 20877434)
Front Hum Neurosci. 2020 Feb 14;14:13. (PMID: 32116602)
Clin Neurophysiol. 2003 Mar;114(3):399-409. (PMID: 12705420)
Sensors (Basel). 2022 Nov 22;22(23):. (PMID: 36501753)
Stroke. 2021 Jul;52(7):2363-2370. (PMID: 34039029)
J Neural Eng. 2011 Apr;8(2):025004. (PMID: 21436534)
J Neural Eng. 2013 Oct;10(5):056015. (PMID: 23986024)
Front Neuroeng. 2014 Jul 09;7:20. (PMID: 25071544)
Disabil Rehabil Assist Technol. 2017 Feb;12(2):165-174. (PMID: 26699697)
J Neurosci Methods. 2008 Oct 30;175(1):148-53. (PMID: 18761037)
IEEE Trans Neural Syst Rehabil Eng. 2019 Sep;27(9):1901-1908. (PMID: 31380763)
J Neural Eng. 2018 Dec;15(6):066030. (PMID: 30260322)
Clin Neurophysiol. 2013 Sep;124(9):1787-97. (PMID: 23684128)
IEEE Trans Biomed Eng. 2014 Jul;61(7):2092-101. (PMID: 24686231)
J Neuroeng Rehabil. 2014 Nov 15;11:153. (PMID: 25398273)
Front Hum Neurosci. 2023 Mar 17;17:1006242. (PMID: 37007682)
J Neural Eng. 2024 Aug 01;21(4):. (PMID: 38986452)
J Phys Ther Sci. 2016 Sep;28(9):2491-2494. (PMID: 27799677)
J Electromyogr Kinesiol. 2019 Oct;48:103-111. (PMID: 31299564)
Int J Neural Syst. 2018 Sep;28(7):1750060. (PMID: 29463157)
J Neural Eng. 2025 Jan 23;22(1):. (PMID: 39808931)
Nat Commun. 2018 Jun 20;9(1):2421. (PMID: 29925890)
J Neural Eng. 2015 Oct;12(5):056013. (PMID: 26305233)
J Physiol. 2012 Apr 1;590(7):1669-82. (PMID: 22250210)
Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul;2024:1-4. (PMID: 40039672)
J Neural Eng. 2014 Oct;11(5):056009. (PMID: 25082789)
Clin Neurophysiol. 1999 Nov;110(11):1842-57. (PMID: 10576479)
Med Biol Eng Comput. 2010 Mar;48(3):229-33. (PMID: 20052556)
Ann Clin Transl Neurol. 2022 May;9(5):722-733. (PMID: 35488791)
J Neural Eng. 2011 Dec;8(6):066009. (PMID: 22027549)
Clin Neurophysiol. 2006 Nov;117(11):2341-56. (PMID: 16876476)
Front Neurosci. 2014 Jul 22;8:208. (PMID: 25100937)
J Neural Eng. 2015 Oct;12(5):056003. (PMID: 26214339)
Front Neuroeng. 2012 Jul 12;5:13. (PMID: 23055968)
Sensors (Basel). 2018 Nov 03;18(11):. (PMID: 30400325)
J Neural Eng. 2021 Jun 09;18(4):. (PMID: 34030137)
J Neurophysiol. 2016 Mar;115(3):1410-21. (PMID: 26719088)
IEEE Trans Biomed Eng. 2014 Feb;61(2):288-96. (PMID: 24448593)
J Neural Eng. 2025 Mar 19;22(2):. (PMID: 40064095)
Ann Phys Rehabil Med. 2015 Feb;58(1):14-22. (PMID: 25661447)
J Neurophysiol. 1995 Sep;74(3):1037-45. (PMID: 7500130)
J Neurophysiol. 2007 Mar;97(3):1951-8. (PMID: 17202240)
J Neural Eng. 2025 Jul 24;22(4):. (PMID: 40664221)
Disabil Rehabil Assist Technol. 2016;11(4):345-50. (PMID: 25270615)
Weitere Informationen
Brain-computer interfaces (BCIs) have successfully been used for stroke rehabilitation by pairing movement intentions with, e.g., functional electrical stimulation. It has also been proposed that BCI training is beneficial for people with cerebral palsy (CP). To develop BCI training for CP patients, movement intentions must be detected from single-trial EEG. The study aim was to detect movement intentions in CP patients and able-bodied participants using different classification scenarios to show the technical feasibility of BCI training in CP patients. Five CP patients and fifteen able-bodied participants performed wrist extensions and ankle dorsiflexions while EEG was recorded. All but one participant repeated the experiment on 1-2 additional days. The EEG was divided into movement intention and idle epochs that were classified with a random forest classifier using temporal, spectral, and template matching features to estimate movement intention detection performance. When calibrating the classifier on data from the same day and participant, 75% and 85% classification accuracies were obtained for CP- and able-bodied participants, respectively. The performance dropped by 5-15 percentage points when training the classifier on data from other days and other participants. In conclusion, movement intentions can be detected from single-trial EEG, indicating the technical feasibility of using BCIs for motor training in people with CP.