Treffer: Construction of Dinucleotide Circular Codes Based on Nucleotide Probabilities.
Original Publication: Leyden, Brill.
Copley SD, Smith E, Morowitz HJ (2005) A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc Natl Acad Sci U S A 102:4442–4447. (PMID: 10.1073/pnas.0501049102)
Fimmel E, Giannerini S, Gonzalez D, Strüngmann L (2015) Dinucleotide circular codes and bijective transformations. J Theor Biol 386:159–165. (PMID: 10.1016/j.jtbi.2015.08.034)
Fimmel E, Michel CJ, Strüngmann L (2016) [Formula: see text]-Nucleotide circular codes in graph theory. Philos Trans Royal Soc A Math Phys Eng Sci A 374(20150058):1–19.
Fimmel E, Michel CJ, Strüngmann L (2017a) Strong comma-free codes in genetic information. Bull Math Biol 79(8):1796–1819. (PMID: 10.1007/s11538-017-0307-0)
Fimmel E, Michel CJ, Strüngmann L (2017b) Diletter circular codes over finite alphabets. Math Biosci 294:120–129. (PMID: 10.1016/j.mbs.2017.10.001)
Fimmel E, Michel CJ, Strüngmann L (2024) Circular cut codes in genetic information. Biosystems 243(105263):1–10.
Fimmel E, Strüngmann L (2016) Maximal dinucleotide comma-free codes. J Theor Biol 389:206–213. (PMID: 10.1016/j.jtbi.2015.10.022)
Fimmel E, Strüngmann L (2018) Mathematical fundamentals for the noise immunity of the genetic code. Biosystems 164:186–198. (PMID: 10.1016/j.biosystems.2017.09.007)
Koch AJ, Lehmann J (1997) About a symmetry of the genetic code. J Theor Biol 189:171–174. (PMID: 10.1006/jtbi.1997.0503)
Lacan J, Michel CJ (2001) Analysis of a circular code model. J Theor Biol 213:159–170. (PMID: 10.1006/jtbi.2001.2416)
Michel CJ (2008) A 2006 review of circular codes in genes. Comput Math Appl 55:984–988. (PMID: 10.1016/j.camwa.2006.12.090)
Michel CJ (2017) The maximal C 3 self-complementary trinucleotide circular code X in genes of bacteria, archaea, eukaryotes, plasmids and viruses. Life 7(20):1–16.
Michel CJ, Pirillo G (2013) Dinucleotide circular codes. ISRN Biomathematics 2013, ID 538631, 1–8.
Michel CJ, Pellegrini M, Pirillo G (2016) Maximal dinucleotide and trinucleotide circular codes. J Theor Biol 389:40–46. (PMID: 10.1016/j.jtbi.2015.08.029)
Subramanian K, Payne B, Feyertag F, Alvarez-Ponce D (2022) The codon statistics database: a database of codon usage bias. Mol Biol Evol 39(8):1–3. (PMID: 10.1093/molbev/msac157)
Yaman T, Harvey JN (2021) Computational analysis of a prebiotic amino acid synthesis with reference to extant codon–amino acid relationships. Life 11(1343):1–16.
0 (Codon)
Weitere Informationen
The construction of a circular code through a biological process, particularly a primitive one in the absence of the protein world, has remained an open problem since the discovery of a maximal [Formula: see text] self-complementary trinucleotide circular code in genes in 1996 (Arquès and Michel, 1996). Circular codes are defined by their ability to recover the correct reading frame of genes at any position. While a class of 216 such trinucleotide codes has been identified, the KL method (Koch and Lehman, 1997), based on nucleotide probability products, generates only a restricted subclass of 88 [Formula: see text]-codes (Lacan and Michel, 2001). Revisiting this probabilistic framework 25 years later, we demonstrate that various classes of dinucleotide circular codes can be generated using a nucleotide probability product model (called Construction 2). We introduce the concept of transitive dinucleotide codes and prove new theorems characterizing their circularity and comma-free properties. Using codon usage from bacteria, archaea, and eukaryotes, 2 "universal" maximal dinucleotide circular codes are observed: [Formula: see text] in the codon site [Formula: see text] and [Formula: see text] in the codon site [Formula: see text] which can be deduced from [Formula: see text] by 1-letter cyclical permutation [Formula: see text] or identically by reversing permutation [Formula: see text]. Unexpectedly, we then show that, under the independence assumption, the dinucleotide code [Formula: see text] through Construction 2 from nucleotide frequencies in the codon sites 1 and 2, is a maximal dinucleotide circular code and is equal to the observed dinucleotide code: [Formula: see text]. These findings support a theoretical model in which dinucleotide circular codes may have originated from statistical properties of primitive nucleotide distributions, providing insights into the possible emergence of the genetic code.
(© 2025. Prof. Dr. Jan van der Hoeven stichting voor theoretische biologie.)
Declarations. Conflicts of Interest: The authors report no conflict of interest.