Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: A Multidimensional Benchmark of Public EEG Datasets for Driver State Monitoring in Brain-Computer Interfaces.

Title:
A Multidimensional Benchmark of Public EEG Datasets for Driver State Monitoring in Brain-Computer Interfaces.
Authors:
Ammar S; Advanced Technologies for Image and Signal Processing (ATISP) Lab, École Nationale d'Électronique et des Télécommunications de Sfax, University of Sfax, Sfax 3018, Tunisia.; ESME Research Lab, ESME, 94200 Ivry sur Seine, France., Triki N; Control and Energy Management (CEM) Laboratory, École Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax 3038, Tunisia., Karray M; ESME Research Lab, ESME, 94200 Ivry sur Seine, France., Ksantini M; Advanced Technologies for Image and Signal Processing (ATISP) Lab, École Nationale d'Électronique et des Télécommunications de Sfax, University of Sfax, Sfax 3018, Tunisia.
Source:
Sensors (Basel, Switzerland) [Sensors (Basel)] 2025 Dec 06; Vol. 25 (24). Date of Electronic Publication: 2025 Dec 06.
Publication Type:
Journal Article; Review
Language:
English
Journal Info:
Publisher: MDPI Country of Publication: Switzerland NLM ID: 101204366 Publication Model: Electronic Cited Medium: Internet ISSN: 1424-8220 (Electronic) Linking ISSN: 14248220 NLM ISO Abbreviation: Sensors (Basel) Subsets: MEDLINE
Imprint Name(s):
Original Publication: Basel, Switzerland : MDPI, c2000-
References:
J Neural Eng. 2017 Apr;14(2):026017. (PMID: 28102833)
Sensors (Basel). 2023 Jul 16;23(14):. (PMID: 37514728)
BMJ. 2021 Mar 29;372:n71. (PMID: 33782057)
Psychophysiology. 2018 Jun;55(6):e13049. (PMID: 29266241)
Sci Data. 2019 Apr 5;6(1):19. (PMID: 30952963)
Neurosci Biobehav Rev. 2023 Sep;152:105333. (PMID: 37517542)
Front Hum Neurosci. 2024 Jun 21;18:1430086. (PMID: 39010893)
Brain Sci. 2024 Dec 27;15(1):. (PMID: 39851385)
Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2636-41. (PMID: 26903657)
Accid Anal Prev. 2024 Nov;207:107769. (PMID: 39236441)
Sci Data. 2024 Apr 12;11(1):378. (PMID: 38609440)
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1138-1149. (PMID: 34129500)
Biomed Eng Online. 2023 Jul 1;22(1):65. (PMID: 37393355)
JMIR Aging. 2024 Mar 22;7:e53564. (PMID: 38517459)
Front Psychol. 2022 Jul 22;13:919695. (PMID: 35936295)
Sensors (Basel). 2021 Mar 29;21(7):. (PMID: 33805522)
Sci Data. 2022 Aug 6;9(1):481. (PMID: 35933432)
Cogn Neurodyn. 2024 Oct;18(5):3195-3208. (PMID: 39555263)
Front Psychol. 2023 Apr 24;14:1107176. (PMID: 37168425)
Front Hum Neurosci. 2018 Dec 18;12:509. (PMID: 30618686)
Contributed Indexing:
Keywords: BCI; EEG; cognitive load; deep learning; driver monitoring; driving simulation; emotion recognition; intelligent transportation systems; machine learning; multimodal signals; public datasets
Entry Date(s):
Date Created: 20251231 Date Completed: 20251231 Latest Revision: 20260103
Update Code:
20260103
PubMed Central ID:
PMC12737006
DOI:
10.3390/s25247426
PMID:
41471422
Database:
MEDLINE

Weitere Informationen

Electroencephalography (EEG)-based brain-computer interfaces (BCIs) hold significant potential for enhancing driver safety through real-time monitoring of cognitive and affective states. However, the development of reliable BCI systems for Advanced Driver Assistance Systems (ADAS) depends on the availability of high-quality, publicly accessible EEG datasets collected during driving tasks. Existing datasets lack standardized parameters and contain demographic biases, which undermine their reliability and prevent the development of robust systems. This study presents a multidimensional benchmark analysis of seven publicly available EEG driving datasets. We compare these datasets across multiple dimensions, including task design, modality integration, demographic representation, accessibility, and reported model performance. This benchmark synthesizes existing literature without conducting new experiments. Our analysis reveals critical gaps, including significant age and gender biases, overreliance on simulated environments, insufficient affective monitoring, and restricted data accessibility. These limitations hinder real-world applicability and reduce ADAS performance. To address these gaps and facilitate the development of generalizable BCI systems, this study provides a structured, quantitative benchmark analysis of publicly available driving EEG datasets, suggesting criteria and recommendations for future dataset design and use. Additionally, we emphasize the need for balanced participant distributions, standardized emotional annotation, and open data practices.