Treffer: Aimed-movement responses and distributional analysis indicate distinctive cognitive control mechanisms in arrow cueing tasks.
Original Publication: Austin, Tex. : Psychonomic Society
Algom, D., & Fitousi, D. (2016). Half a century of research on Garner interference and the separability–integrality distinction. Psychological Bulletin, 142(12), 1352–1383. https://doi.org/10.1037/bul0000072. (PMID: 10.1037/bul0000072)
Ansorge, U., Gozli, D. G., & Goller, F. (2019). Investigating the contribution of task and response repetitions to the sequential modulations of attentional cueing effects. Psychological Research, 83(6), 1251–1268. (PMID: 10.1007/s00426-017-0950-y)
Arjona, A., Escudero, M., & Gomez, C. M. (2014). Updating of attentional and premotor allocation resources as function of previous trial outcome. Scientific Reports, 4, Article 4526. https://doi.org/10.1038/srep04526. (PMID: 10.1038/srep04526)
Asanowicz, D., Panek, B., Kotlewska, I., & van der Lubbe, R. (2023). On the relevance of posterior and midfrontal theta activity for visuospatial attention. Journal of Cognitive Neuroscience, 35(12), 1972–2001. https://doi.org/10.1162/jocn_a_02060. (PMID: 10.1162/jocn_a_02060)
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652. https://doi.org/10.1037/0033-295X.108.3.624. (PMID: 10.1037/0033-295X.108.3.624)
Braem, S., Bugg, J. M., Schmidt, J. R., Crump, M. J. C., & Egner, T. (2019). Measuring adaptive control in conflict tasks. Trends in Cognitive Sciences, 23(9), 769–783. (PMID: 10.1016/j.tics.2019.07.002)
Brown, T. (2011). The relationship between Stroop interference and facilitation effects: Statistical artifacts, baselines, and a reassessment. Journal of Experimental Psychology: Human Perception and Performance, 37(1), 85–99. https://doi.org/10.1037/a0019252. (PMID: 10.1037/a0019252)
Buetti, S., & Kerzel, D. (2009). Conflicts during response selection affect response programming: Reactions toward the source of stimulation. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 816–834. https://doi.org/10.1037/a0011092. (PMID: 10.1037/a0011092)
Burnham, B. R. (2013). Using response time distributions to examine top-down influences on attentional capture. Attention, Perception, & Psychophysics, 75(2), 257–277. https://doi.org/10.3758/s13414-012-0396-7. (PMID: 10.3758/s13414-012-0396-7)
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. https://doi.org/10.1016/j.visres.2011.04.012. (PMID: 10.1016/j.visres.2011.04.012)
Chica, A. B., Martin-Arevalo, E., Botta, F., & Lupianez, J. (2014). The spatial orienting paradigm: How to design and interpret spatial attention experiments. Neuroscience and Biobehavioral Reviews, 40, 35–51. https://doi.org/10.1016/j.neubiorev.2014.01.002. (PMID: 10.1016/j.neubiorev.2014.01.002)
Ciardo, F., Ricciardelli, P., & Iani, C. (2018). Trial-by-trial modulations in the orienting of attention elicited by gaze and arrow cues. Quarterly Journal of Experimental Psychology, 72(3), 543–556. https://doi.org/10.1177/1747021818769588. (PMID: 10.1177/1747021818769588)
Dignath, D., Kiesel, A., Schiltenwolf, M., & Hazeltine, E. (2021). Multiple routes to control in the prime-target task: Congruence sequence effects emerge due to modulation of irrelevant prime activity and utilization of temporal order information. Journal of Cognition. https://doi.org/10.5334/joc.143. (PMID: 10.5334/joc.143)
Dignath, D., Wirth, R., Kühnhausen, J., Gawrilow, C., Kunde, W., & Kiesel, A. (2020). Motivation drives conflict adaptation. Motivation Science, 6(1), 84–89. https://doi.org/10.1037/mot0000136. (PMID: 10.1037/mot0000136)
Dodd, M. D., & Pratt, J. (2007). The effect of previous trial type on inhibition of return. Psychological Research, 71(4), 411–417. https://doi.org/10.1007/s00426-005-0028-0. (PMID: 10.1007/s00426-005-0028-0)
Doricchi, F., Macci, E., Silvetti, M., & Macaluso, E. (2010). Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cerebral Cortex, 20(7), 1574–1585. https://doi.org/10.1093/cercor/bhp215. (PMID: 10.1093/cercor/bhp215)
Erb, C. D., & Marcovitch, S. (2018). Deconstructing the Gratton effect: Targeting dissociable trial sequence effects in children, pre-adolescents, and adults. Cognition, 179, 150–162. https://doi.org/10.1016/j.cognition.2018.06.007. (PMID: 10.1016/j.cognition.2018.06.007)
Erb, C. D., Moher, J., Sobel, D., & Song, J. (2016). Reach tracking reveals dissociable processes underlying cognitive control. Cognition, 152, 114–126. https://doi.org/10.1016/j.cognition.2016.03.015. (PMID: 10.1016/j.cognition.2016.03.015)
Erb, C. D., Smith, K. A., & Moher, J. (2020). Tracking continuities in the flanker task: From continuous flow to movement trajectories. Attention, Perception, & Psychophysics. https://doi.org/10.3758/s13414-020-02154-4. (PMID: 10.3758/s13414-020-02154-4)
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149. https://doi.org/10.3758/BF03203267. (PMID: 10.3758/BF03203267)
Evans, N., & Servant, M. (2022). A model-based approach to disentangling facilitation and interference effects in conflict tasks. Psychological Review, 129(5), 1183–1209. https://doi.org/10.1037/rev0000357. (PMID: 10.1037/rev0000357)
Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347. https://doi.org/10.1162/089892902317361886. (PMID: 10.1162/089892902317361886)
Frischen, A., Bayliss, A. P., & Tipper, S. P. (2007). Gaze cueing of attention: Visual attention, social cognition, and individual differences. Psychological Bulletin, 133(4), 694–724. https://doi.org/10.1037/0033-2909.133.4.694. (PMID: 10.1037/0033-2909.133.4.694)
Grant, D. A. (1956). Analysis-of-variance tests in the analysis and comparison of curves. Psychological Bulletin, 53(2), 141–154. https://doi.org/10.1037/h0038479. (PMID: 10.1037/h0038479)
Grant, L. D., Cookson, S. L., & Weissman, D. H. (2020). Task sets serve as boundaries for the congruency sequence effect. Journal of Experimental Psychology: Human Perception and Performance, 46(8), 798–812. https://doi.org/10.1037/xhp0000750. (PMID: 10.1037/xhp0000750)
Gyurkovics, M., Kovacs, M., Jaquiery, M., Palfi, B., Dechterenko, F., & Aczel, B. (2020). Registered replication report of Weissman, D. H., Jiang, J., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Attention, Perception, & Psychophysics, 82(8), 3777–3787. https://doi.org/10.3758/s13414-020-02021-2. (PMID: 10.3758/s13414-020-02021-2)
Hazeltine, E., Lightman, E., Schwarb, H., & Schumacher, E. H. (2011). The boundaries of sequential modulations: Evidence for set-level control. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1898–1914.
Hommel, B., Proctor, R. W., & Vu, K. P. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68(1), 1–17. https://doi.org/10.1007/s00426-003-0132-y. (PMID: 10.1007/s00426-003-0132-y)
Howard, L., Lupiáñez, J., & Tipper, S. (1999). Inhibition of return in a selective reaching task: An investigation of reference frames. The Journal of General Psychology, 126, 421–442. https://doi.org/10.1080/00221309909595374. (PMID: 10.1080/00221309909595374)
Jongen, E. M., & Smulders, F. T. (2007). Sequence effects in a spatial cueing task: Endogenous orienting is sensitive to orienting in the preceding trial. Psychological Research, 71(5), 516–523. https://doi.org/10.1007/s00426-006-0065-3. (PMID: 10.1007/s00426-006-0065-3)
Kim, S., & Cho, Y. S. (2014). Congruency sequence effect without feature integration and contingency learning. Acta Psychologica, 149, 60–68. https://doi.org/10.1016/j.actpsy.2014.03.004. (PMID: 10.1016/j.actpsy.2014.03.004)
Kim, S., Lee, S. H., & Cho, Y. S. (2015). Control processes through the suppression of the automatic response activation triggered by task-irrelevant information in the Simon-type tasks. Acta Psychologica, 162, 51–61. https://doi.org/10.1016/j.actpsy.2015.10.001. (PMID: 10.1016/j.actpsy.2015.10.001)
Koob, V., Mackenzie, I., Ulrich, R., Leuthold, H., & Janczyk, M. (2023). The role of task-relevant and task-irrelevant information in congruency sequence effects: Applying the diffusion model for conflict tasks. Cognitive Psychology, 140, Article 101528. https://doi.org/10.1016/j.cogpsych.2022.101528. (PMID: 10.1016/j.cogpsych.2022.101528)
Lee, J., & Cho, Y. S. (2013). Congruency sequence effect in cross-task context: Evidence for dimension-specific modulation. Acta Psychologica, 144(3), 617–627. https://doi.org/10.1016/j.actpsy.2013.09.013. (PMID: 10.1016/j.actpsy.2013.09.013)
Lee, N., & Cho, Y. S. (2024). Investigating the nature of spatial codes for different modes of Simon tasks: Evidence from congruency sequence effects and delta functions. Journal of Experimental Psychology: Human Perception and Performance, 50(8), 819–841. https://doi.org/10.1037/xhp0001220. (PMID: 10.1037/xhp0001220)
Lee, Y. S., & Cho, Y. S. (2023). The congruency sequence effect of the Simon task in a cross-modality context. Journal of Experimental Psychology: Human Perception and Performance, 49(9), 1221–1235. https://doi.org/10.1037/xhp0001145. (PMID: 10.1037/xhp0001145)
Lim, C. E., & Cho, Y. (2021). Response mode modulates the congruency sequence effect in spatial conflict tasks: Evidence from aimed-movement responses. Psychological Research, 85, 2047–2068. https://doi.org/10.1007/s00426-020-01376-3. (PMID: 10.1007/s00426-020-01376-3)
Lin, D. J., & Little, D. R. (2023). Further tests of sequence-sensitive models in a modified garner task using separable dimensions. Journal of Experimental Psychology: General, 152(4), 1080–1121. https://doi.org/10.1037/xge0001321.
Ling, S., & Carrasco, M. (2006). Sustained and transient covert attention enhance the signal via different contrast response functions. Vision Research, 46(8/9), 1210–1220. https://doi.org/10.1016/j.visres.2005.05.008. (PMID: 10.1016/j.visres.2005.05.008)
Little, D. R., Wang, T., & Nosofsky, R. M. (2016). Sequence-sensitive exemplar and decision-bound accounts of speeded-classification performance in a modified Garner-tasks paradigm. Cognitive Psychology, 89, 1–38. https://doi.org/10.1016/j.cogpsych.2016.07.001.
Luo, C., & Proctor, R. W. (2022). A diffusion model for the congruency sequence effect. Psychonomic Bulletin & Review, 29(6), 2034–2051. https://doi.org/10.3758/s13423-022-02119-8. (PMID: 10.3758/s13423-022-02119-8)
Mackenzie, I. G., Mittelstädt, V., Ulrich, R., & Leuthold, H. (2022). The role of temporal order of relevant and irrelevant dimensions within conflict tasks. Journal of Experimental Psychology: Human Perception and Performance, 48(10), 1099–1115. https://doi.org/10.1037/xhp0001032. (PMID: 10.1037/xhp0001032)
MacLeod, C. (1991). Half a century of research on the Stroop effect—An integrative review. Psychological Bulletin, 109, 163–203. https://doi.org/10.1037/0033-2909.109.2.163. (PMID: 10.1037/0033-2909.109.2.163)
Mittelstädt, V., Miller, J., Leuthold, H., Mackenzie, I. G., & Ulrich, R. (2022). The time-course of distractor-based activation modulates effects of speed-accuracy tradeoffs in conflict tasks. Psychonomic Bulletin & Review, 29(3), 837–854. https://doi.org/10.3758/s13423-021-02003-x. (PMID: 10.3758/s13423-021-02003-x)
Mittelstädt, V., & Miller, J. (2020). Beyond mean reaction times: Combining distributional analyses with processing stage manipulations in the Simon task. Cognitive Psychology, 119, Article 101275. https://doi.org/10.1016/j.cogpsych.2020.101275. (PMID: 10.1016/j.cogpsych.2020.101275)
Mordkoff, J. T., Halterman, R., & Chen, P. (2008). Why does the effect of short-SOA exogenous cuing on simple RT depend on the number of display locations? Psychonomic Bulletin & Review, 15(4), 819–824. https://doi.org/10.3758/pp.15.4.819. (PMID: 10.3758/pp.15.4.819)
Panis, S., & Schmidt, T. (2022). When does “inhibition of return” occur in spatial cueing tasks? Temporally disentangling multiple cue-triggered effects using response history and conditional accuracy analyses. Open Psychology, 4(1), 84–114. https://doi.org/10.1515/psych-2022-0005. (PMID: 10.1515/psych-2022-0005)
Parris, B. A., Hasshim, N., Wadsley, M., Augustinova, M., & Ferrand, L. (2022). The loci of Stroop effects: A critical review of methods and evidence for levels of processing contributing to color-word Stroop effects and the implications for the loci of attentional selection. Psychological Research, 86(4), 1029–1053. https://doi.org/10.1007/s00426-021-01554-x. (PMID: 10.1007/s00426-021-01554-x)
Pellicano, A., Lugli, L., Baroni, G., & Nicoletti, R. (2009). The simon effect with conventional signals: A time-course analysis. Experimental Psychology, 56(4), 219–227. https://doi.org/10.1027/1618-3169.56.4.219. (PMID: 10.1027/1618-3169.56.4.219)
Pratte, M. S. (2021). Eriksen flanker delta plot shapes depend on the stimulus. Attention, Perception, & Psychophysics, 83(2), 685–699. https://doi.org/10.3758/s13414-020-02166-0. (PMID: 10.3758/s13414-020-02166-0)
Pratte, M. S., Rouder, J. N., Morey, R. D., & Feng, C. (2010). Exploring the differences in distributional properties between Stroop and Simon effects using delta plots. Attention, Perception, & Psychophysics, 72(7), 2013–2025. https://doi.org/10.3758/APP.72.7.2013. (PMID: 10.3758/APP.72.7.2013)
Proctor, R. W., Miles, J. D., & Baroni, G. (2011). Reaction time distribution analysis of spatial correspondence effects. Psychonomic Bulletin & Review, 18(2), 242–266. (PMID: 10.3758/s13423-011-0053-5)
Proctor, R. W., & Shao, C. (2010). Does the contribution of stimulus-hand correspondence to the auditory simon effect increase with practice? Experimental Brain Research, 204(1), 131–137. https://doi.org/10.1007/s00221-010-2284-5. (PMID: 10.1007/s00221-010-2284-5)
Proctor, R. W., Yamaguchi, M., Zhang, Y., & Vu, K. P. (2009). Influence of visual stimulus mode on transfer of acquired spatial associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(2), 434–445. https://doi.org/10.1037/a0014529. (PMID: 10.1037/a0014529)
Qian, Q., Li, Y., Song, M., Feng, Y., Fu, Y., & Shinomori, K. (2022). Interactive modulations between congruency sequence effects and validity sequence effects. Psychological Research, 86(6), 1944–1957. https://doi.org/10.1007/s00426-021-01612-4. (PMID: 10.1007/s00426-021-01612-4)
Qian, Q., Pan, J., Song, M., Feng, Y., & Shinomori, K. (2020). Feature integration is not the whole story of the sequence effects of symbolic cueing. Journal of Cognitive Psychology, 32(7), 645–660. https://doi.org/10.1080/20445911.2020.1817928. (PMID: 10.1080/20445911.2020.1817928)
Qian, Q., Pan, J., Song, M., Li, Y., Yin, J., Feng, Y., Fu, Yunfa, & Shinomori, K. (2024). Generalization of sequence effects from conflict to cueing tasks. Psychological Research, 88(7), 2080–2095. https://doi.org/10.1007/s00426-024-02014-y. (PMID: 10.1007/s00426-024-02014-y)
Qian, Q., Shinomori, K., & Song, M. (2012). Sequence effects by non-predictive arrow cues. Psychological Research, 76(3), 253–262. https://doi.org/10.1007/s00426-011-0339-2. (PMID: 10.1007/s00426-011-0339-2)
Qian, Q., Wang, F., Feng, Y., & Song, M. (2015). Spatial organisation between targets and cues affects the sequence effect of symbolic cueing. Journal of Cognitive Psychology, 27(07), 855–865. https://doi.org/10.1080/20445911.2015.1048249. (PMID: 10.1080/20445911.2015.1048249)
Qian, Q., Wang, F., Song, M., Feng, Y., & Shinomori, K. (2017). Spatial correspondence learning is critical for the sequence effects of symbolic cueing. Japanese Psychological Research, 59(3), 209–220. https://doi.org/10.1111/jpr.12148. (PMID: 10.1111/jpr.12148)
Ridderinkhof, R. K. (2002). Micro- and macro-adjustments of task set: Activation and suppression in conflict tasks. Psychological Research, 66(4), 312–323. https://doi.org/10.1007/s00426-002-0104-7. (PMID: 10.1007/s00426-002-0104-7)
Ridderinkhof, K. R., Wylie, S. A., van den Wildenberg, W. P. M., Bashore, T. R., & van der Molen, M. W. (2021). The arrow of time: Advancing insights into action control from the arrow version of the Eriksen flanker task. Attention, Perception, & Psychophysics, 83(2), 700–721. https://doi.org/10.3758/s13414-020-02167-z. (PMID: 10.3758/s13414-020-02167-z)
Rubichi, S., & Pellicano, A. (2004). Does the simon effect affect movement execution? European Journal of Cognitive Psychology, 16(6), 825–840. https://doi.org/10.1080/09541440340000367. (PMID: 10.1080/09541440340000367)
Scherbaum, S., Dshemuchadse, M., Fischer, R., & Goschke, T. (2010). How decisions evolve: The temporal dynamics of action selection. Cognition, 115(3), 407–416. https://doi.org/10.1016/j.cognition.2010.02.004. (PMID: 10.1016/j.cognition.2010.02.004)
Schmidt, J. R., & De Houwer, J. (2011). Now you see it, now you don’t: Controlling for contingencies and stimulus repetitions eliminates the Gratton effect. Acta Psychologica, 138(1), 176–186. https://doi.org/10.1016/j.actpsy.2011.06.002. (PMID: 10.1016/j.actpsy.2011.06.002)
Schmidt, J. R., & Weissman, D. H. (2014). Congruency sequence effects without feature integration or contingency learning confounds. PLoS One, 9(7), Article e102337. https://doi.org/10.1371/journal.pone.0102337. (PMID: 10.1371/journal.pone.0102337)
Schumacher, E. H., & Hazeltine, E. (2016). Hierarchical task representation: Task files and response selection. Current Directions in Psychological Science, 25(6), 449–454. (PMID: 10.1177/0963721416665085)
Sheliga, B. M., Craighero, L., Riggio, L., & Rizzolatti, G. (1997). Effects of spatial attention on directional manual and ocular responses. Experimental Brain Research, 114(2), 339–351. https://doi.org/10.1007/pl00005642. (PMID: 10.1007/pl00005642)
Simon, J. R., & Rudell, A. P. (1967). Auditory s-r compatibility: The effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51(3), 300–304. https://doi.org/10.1037/h0020586. (PMID: 10.1037/h0020586)
Smith, P., & Ulrich, R. (2024). The neutral condition in conflict tasks: On the violation of the midpoint assumption in reaction time trends. Quarterly Journal of Experimental Psychology (Hove), 77(5), 1023–1043. https://doi.org/10.1177/17470218231201476. (PMID: 10.1177/17470218231201476)
Smith, P., & Ulrich, R. (2025). Decomposing delta plots: Exploring the time course of the congruency effect using inhibition and facilitation curves. Psychological Research, 89(1), 52. https://doi.org/10.1007/s00426-024-02075-z. (PMID: 10.1007/s00426-024-02075-z)
Souto, D., & Kerzel, D. (2009). Evidence for an attentional component in saccadic inhibition of return. Experimental Brain Research. https://doi.org/10.1007/s00221-009-1911-5. (PMID: 10.1007/s00221-009-1911-5)
Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 28(6), 1345–1363. https://doi.org/10.1037/0096-1523.28.6.1345. (PMID: 10.1037/0096-1523.28.6.1345)
Stroop, J. R. (1992). Studies of interference in serial verbal reactions. Journal of Experimental Psychology: General, 121(1), 15–23. https://doi.org/10.1037/0096-3445.121.1.15. (PMID: 10.1037/0096-3445.121.1.15)
Töbel, L., Hübner, R., & Stürmer, B. (2014). Suppression of irrelevant activation in the horizontal and vertical simon task differs quantitatively not qualitatively. Acta Psychologica, 152, 47–55. https://doi.org/10.1016/j.actpsy.2014.07.007. (PMID: 10.1016/j.actpsy.2014.07.007)
Tomat, M., Wendt, M., Luna-Rodriguez, A., & Jacobsen, T. (2021). Adjustments of selective attention to response conflict–controlling for perceptual conflict, target-distractor identity, and congruency level sequence pertaining to the congruency sequence effect. Attention, Perception, & Psychophysics, 83(6), 2531–2550. https://doi.org/10.3758/s13414-021-02294-1. (PMID: 10.3758/s13414-021-02294-1)
Ulrich, R., SchröTer, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive Psychology, 78, 148–174. (PMID: 10.1016/j.cogpsych.2015.02.005)
van den Wildenberg, W. P., Wylie, S. A., Forstmann, B. U., Burle, B., Hasbroucq, T., & Ridderinkhof, K. R. (2010). To head or to heed? Beyond the surface of selective action inhibition: A review. Frontiers in Human Neuroscience, 4, 222. https://doi.org/10.3389/fnhum.2010.00222. (PMID: 10.3389/fnhum.2010.00222)
Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 27, 731–751. https://doi.org/10.1037/0096-1523.27.3.731. (PMID: 10.1037/0096-1523.27.3.731)
Weissman, D., Egner, T., Hawks, Z., & Link, J. (2015). The congruency sequence effect emerges when the distracter precedes the target. Acta Psychologica. https://doi.org/10.1016/j.actpsy.2015.01.003. (PMID: 10.1016/j.actpsy.2015.01.003)
Weissman, D. H., Jiang, J., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 2022–2037. https://doi.org/10.1037/a0037454. (PMID: 10.1037/a0037454)
Wirth, R., Foerster, A., Kunde, W., & Pfister, R. (2020). Design choices: Empirical recommendations for designing two-dimensional finger-tracking experiments. Behavior Research Methods, 52(6), 2394–2416. https://doi.org/10.3758/s13428-020-01409-0. (PMID: 10.3758/s13428-020-01409-0)
Wylie, S. A., Ridderinkhof, K. R., Bashore, T. R., & van den Wildenberg, W. P. (2010). The effect of Parkinson’s disease on the dynamics of on-line and proactive cognitive control during action selection. Journal of Cognitive Neuroscience, 22(9), 2058–2073. https://doi.org/10.1162/jocn.2009.21326. (PMID: 10.1162/jocn.2009.21326)
Wylie, S. A., van den Wildenberg, W. P., Ridderinkhof, K. R., Bashore, T. R., Powell, V. D., . . . Wooten, G. F. (2009). The effect of speed–accuracy strategy on response interference control in Parkinson’s disease. Neuropsychologia, 47(8/9), 1844–1853. https://doi.org/10.1016/j.neuropsychologia.2009.02.025.
Weitere Informationen
Recent research on validity sequence effects (VSE) has drawn on conflict task theories to explain the psychological mechanisms underlying the VSE. This study analyzed a confound-minimized arrow cueing task and a prime-probe task using the aimed-movement method, which separates reaction times into initiation time (IT) and movement time (MT). Neutral stimuli were included to isolate the benefit/facilitation (or cost/interference) effects of the cues (or the primes). Distributional analyses showed that significant cueing effect and VSE only appeared in the IT data. In addition, the size of the cueing effect increased with the extension of the response latencies, mainly attributed to the increase in the cost effect by invalid cues. The size of the VSE did not vary at different response latencies and was mainly reflected by the enlarged cueing effect after previous valid cues. In comparison, the size of the congruency effect in the prime-probe task increased with the extension of the response latencies only in the MT data. Like VSE, the observed congruency sequence effect (CSE) appeared at IT data and the size of it did not vary at different response latencies, but the CSE was mainly reflected by the reduced congruency effect after previous incongruent trials. These findings are discussed and compared with literature findings from conflict tasks. The results indicate that the cueing effect of cueing tasks has qualitative difference with the congruency effect of conflict tasks, but the adaptive cognitive mechanisms (i.e., sequence effects) under these tasks are less different with each other.
(© 2026. The Psychonomic Society, Inc.)
Declarations. Ethical Approval: The study was approved by the Medical ethics committee of Kunming University of Science and Technology as part of the NSFC research project at April 9th 2020 (KMUST-MEC-024) and March 5th 2025 (KMUST-MEC-2025-001). Consent to participate: Informed consent was obtained from all individual participants included in the study. Consent for publication: The authors affirm that human research participants provided informed consent for publication of the experimental data. Competing interests: The authors have no competing interests to declare that are relevant to the content of this article.