Treffer: Integrating synthetic biology and process engineering for enhanced isobutanol biosynthesis yield and sustainability.
Ali SA, Songdech P, Samakkarn W, Duangphakdee O, Soontorngun N. New regulatory role of Znf1 in transcriptional control of pentose phosphate pathway and ATP synthesis for enhanced isobutanol and acid tolerance. Yeast. 2024;41:401–17.
Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. 2007;9:258–67.
Ankenbauer A, Nitschel R, Teleki A, MüLLER T, Favilli L, Blombach B, et al. Micro‐aerobic production of isobutanol with engineered Pseudomonas putida. Eng Life Sci. 2021;21:475–88.
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–9.
Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol. 2009;27:1177–80.
Atsumi S, Li Z, Liao JC. Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol. 2009;75:6306–11.
Atsumi S, Wu T-Y, Eckl E-M, Hawkins SD, Buelter T, Liao JC. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol. 2010;85:651–7.
Atsumi S, Wu TY, Machado IM, Huang WC, Chen PY, Pellegrini M, et al. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol. 2010;6:449.
Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol. 2013;31:335–41.
Baez A, Cho K-M, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol. 2011;90:1681–90.
Bahls MO, Platz L, Morgado G, Schmidt GW, Panke S. Directed evolution of biofuel-responsive biosensors for automated optimization of branched-chain alcohol biosynthesis. Metab Eng. 2022;69:98–111.
Balat M, Balat H, Öz C. Progress in bioethanol processing. Prog Energy Combust Sci. 2008;34:551–73.
Bankar SB, Survase SA, Ojamo H, GRANSTRöM T. Biobutanol: the outlook of an academic and industrialist. RSC Adv. 2013;3:24734–57.
Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng. 2011;13:345–52.
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41:7429–37.
Blombach B, Eikmanns BJ. Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioengineered Bugs. 2011;2:346–50.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn J-W, Wendisch VF, et al. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol. 2011;77:3300–10.
Boecker S, Schulze P, Klamt S. Growth-coupled anaerobic production of isobutanol from glucose in minimal medium with Escherichia coli. Biotechnol Biofuels Bioprod. 2023;16:148.
Bourgade B, Xie H, Lindblad P, STENSJö K. Development of a CRISPR activation system for targeted gene upregulation in Synechocystis sp. PCC 6803. Commun Biol. 2025;8:772.
Bowles LK, Ellefson W. Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol. 1985;50:1165–70.
Brynildsen MP, Liao JC. An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol. 2009;5:277.
Bush M, Dixon R. The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev. 2012;76:497–529.
Cabezas RA, Riquelme CA, Merlet G, Quijada-Maldonado E, Romero JR. Separation of biobutanol from fermentation solutions by perstraction using [P6, 6, 6, 14][Tf2N] as receiving phase: phase temperature analysis. Chem Eng Trans. 2022;96:265–70.
Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell. 2018;173:1581–92.
Chen C-T, Liao JC. Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiol Lett. 2016;363:fnw020.
Chen G-Q, Patel MK. Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev. 2012;112:2082–99.
Cheng F, Tang XL, Kardashliev T. Transcription factor-based biosensors in high-throughput screening: advances and applications. Biotechnol J. 2018;13:1700648.
Choi K-Y, Wernick DG, Tat CA, Liao JC. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng. 2014;23:53–61.
Chong H, Geng H, Zhang H, Song H, Huang L, Jiang R. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Biotechnol Bioeng. 2014;111:700–8.
Claessens B, de Staercke M, Verstraete E, Baron GV, Cousin-Saint-remi J, Denayer JF. Identifying selective adsorbents for the recovery of renewable isobutanol. ACS Sustain Chem Eng. 2020;8:9115–24.
Dai JY, Sun YQ, Xiu ZL. Separation of bio-based chemicals from fermentation broths by salting-out extraction. Eng Life Sci. 2014;14:108–17.
De Lima AEP, Wrobel RL, Paul B, Anthony LC, Sato TK, Zhang Y, et al. High yield co-production of isobutanol and ethanol from switchgrass: experiments, and process synthesis and analysis. Sustain Energy Fuels. 2023;7(14):3266–75. https://doi.org/10.1039/D2SE01741E.
Demirba A. Biofuels securing the planet’s future energy needs. Energy Convers Manage. 2009;50:2239–49.
Dietrich JA, Shis DL, Alikhani A, Keasling JD. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth Biol. 2013;2:47–58.
Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, et al. Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature. 2010;464:1039–42.
Erickson B, Winters P. Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J. 2012;7:176–85.
Fatehi P. Recent advancements in various steps of ethanol, butanol, and isobutanol productions from woody materials. Biotechnol Prog. 2013;29:297–310.
Felpeto-Santero C, Rojas A, Tortajada M, GALáN B, RAMóN D, GARCíA JL. Engineering alternative isobutanol production platforms. AMB Express. 2015;5:1–9.
Fenkl M, Pechout M, Vojtisek M. N-butanol and isobutanol as alternatives to gasoline: Comparison of port fuel injector characteristics. London: EDP Sciences; 2016.
Fu C, Li Z, Jia C, Zhang W, Zhang Y, Yi C, et al. Recent advances on bio-based isobutanol separation. Energy Convers Manag: X. 2021;10:100059. https://doi.org/10.1016/j.ecmx.2020.100059.
Fu C, Li Z, Zhang Y, Yi C, Xie S. Assessment of extraction options for a next-generation biofuel: recovery of bio-isobutanol from aqueous solutions. Eng Life Sci. 2021;21:653–65.
Gaida SM, Liedtke A, Jentges AHW, Engels B, Jennewein S. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microb Cell Fact. 2016;15:1–11.
Grund A, Shapiro J, Fennewald M, Bacha P, Leahy J, Markbreiter K, et al. Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol. 1975;123:546–56.
Gu J, Zhou J, Zhang Z, Kim CH, Jiang B, Shi J, et al. Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway. Metab Eng. 2017;43:71–84.
Gu P, Liu L, Ma Q, Dong Z, Wang Q, Xu J, et al. Metabolic engineering of Escherichia coli for the production of isobutanol: a review. World J Microbiol Biotechnol. 2021;37:1–9.
Gu P, Zhao S, Niu H, Li C, Jiang S, Zhou H, et al. Synthesis of isobutanol using acetate as sole carbon source in Escherichia coli. Microb Cell Fact. 2023;22:196.
Gupta M, Wong M, Jawed K, Gedeon K, Barrett H, Bassalo M, et al. Isobutanol production by combined in vivo and in vitro metabolic engineering. Metab Eng Commun. 2022;15:e00210. https://doi.org/10.1016/j.mec.2022.e00210.
Gwon D-A, Seok JY, Jung GY, Lee JW. Biosensor-assisted adaptive laboratory evolution for violacein production. Int J Mol Sci. 2021;22:6594.
Hanna DG, Shylesh S, Parada PA, Bell AT. Hydrogenation of butanal over silica-supported Shvo’s catalyst and its use for the gas-phase conversion of propene to butanol via tandem hydroformylation and hydrogenation. J Catal. 2014;311:52–8.
Hassankhan B, Raisi A. Separation of isobutanol/water mixtures by hybrid distillation-pervaporation process: modeling, simulation and economic comparison. Chem Eng Process-Process Intensif. 2020;155:108071.
Hazelwood LA, Daran J-M, van Maris AJ, Pronk JT, Dickinson JR. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–66.
Higashide W, Li Y, Yang Y, Liao JC. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol. 2011;77:2727–33.
Hoffman SM, Alvarez M, Alfassi G, Rein DM, Garcia-Echauri S, Cohen Y, et al. Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts. Biotechnol Biofuels. 2021;14:1–17.
Hohmann S. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae. J Bacteriol. 1991;173:7963–9.
Huo Y-X, Cho KM, Rivera JGL, Monte E, Shen CR, Yan Y, et al. Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol. 2011;29:346–51.
Hussain A, Shahbaz U, Khan S, Basharat S, Ahmad K, Khan F, et al. Advances in microbial metabolic engineering for the production of butanol isomers (isobutanol and 1-butanol) from a various biomass. Bioenerg Res. 2022;15:1854–71.
Ida Y, Furusawa C, Hirasawa T, Shimizu H. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng. 2012;113:192–5.
Jang YS, Yang J, Kim JK, Kim TI, Park YC, Kim IJ, et al. Adaptive laboratory evolution and transcriptomics-guided engineering of Escherichia coli for increased isobutanol tolerance. Biotechnol J. 2024;19:2300270.
Jiang Y, Wu R, Zhou J, He A, Xu J, Xin F, et al. Recent advances of biofuels and biochemicals production from sustainable resources using co-cultivation systems. Biotechnol biofuels. 2019;12(1):155.
Jiao J, Lv X, Shen C, Morigen M. Genome and transcriptomic analysis of the adaptation of Escherichia coli to environmental stresses. Comput Struct Biotechnol J. 2024;23:2132–40.
Jo M-H, Heo S-Y, Ju J-H, Jeong KJ, Oh B-RJRE. Efficient production of isobutanol from glycerol in Klebsiella pneumoniae: Regulation of acetohydroxyacid synthase, a rate-limiting enzyme in isobutanol biosynthesis. Amsterdam: Elsevier; 2024.
Jung H-M, Lee JY, Lee J-H, Oh M-K. Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes. Bioresour Technol. 2018;259:373–80.
Jung HM, Kim YH, Oh MK. Formate and nitrate utilization in Enterobacter aerogenes for semi-anaerobic production of isobutanol. Biotechnol J. 2017;12:1700121.
Kanno M, Katayama T, Tamaki H, Mitani Y, Meng X-Y, Hori T, et al. Isolation of butanol-and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance. Appl Environ Microbiol. 2013;79:6998–7005.
Kim D, Noh MH, Park M, Kim I, Ahn H, Ye D-Y, et al. Enzyme activity engineering based on sequence co-evolution analysis. Metab Eng. 2022;74:49–60.
Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA. Involvement of BmoR and BmoG in n-alkane metabolism in ‘Pseudomonas butanovora’. Microbiology. 2008;154:139–47.
Kurylenko OO, Ruchala J, Dmytruk KV, Abbas CA, Sibirny AA. Multinuclear yeast Magnusiomyces (Dipodascus, Endomyces) magnusii is a promising isobutanol producer. Biotechnol J. 2020;15:1900490.
Lakshmi NM, Binod P, Sindhu R, Awasthi MK, Pandey A. Microbial engineering for the production of isobutanol: current status and future directions. Bioengineered. 2021;12:12308–21.
Lang K, Zierow J, Buehler K, Schmid A. Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites. Microb Cell Fact. 2014;13:1–15.
Lee S, Kim P. Current status and applications of adaptive laboratory evolution in industrial microorganisms. J Microbiol Biotechnol. 2020;30:793.
Lee W-H, Seo S-O, Bae Y-H, Nan H, Jin Y-S, Seo J-H. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng. 2012;35:1467–75.
Li H, Cann AF, Liao JC. Biofuels: biomolecular engineering fundamentals and advances. Annu Rev Chem Biomol Eng. 2010;1:19–36.
Li H, Opgenorth PH, Wernick DG, Rogers S, Wu T-Y, Higashide W, et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012;335:1596–1596.
Li L, Shao Y, Gao Y, Zhen Y, Li R, Cao X, et al. Extraction of isobutanol from aqueous solution by four solvents: liquid–liquid phase equilibrium measurements and thermodynamic modeling studies. J Chem Eng Data. 2024. https://doi.org/10.1021/acs.jced.4c00185.
Li S, Huang D, Li Y, Wen J, Jia X. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis. Microb Cell Fact. 2012;11:1–12.
Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol. 2011;91:577–89.
Liang S, Chen H, Liu J, Wen J. Rational design of a synthetic Entner-Doudoroff pathway for enhancing glucose transformation to isobutanol in Escherichia coli. J Ind Microbiol Biotechnol. 2018;45:187–99.
Liao J, Hu Q, Mu J, He X, Wang S, Jiemin D, et al. In situ carbon coated flower-like VPO 4 as an anode material for potassium-ion batteries. Chem Commun. 2019;55:13916–9.
Lin PP, Mi L, Morioka AH, Yoshino KM, Konishi S, Xu SC, et al. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng. 2015;31:44–52.
Lin PP, Rabe KS, Takasumi JL, Kadisch M, Arnold FH, Liao JC. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng. 2014;24:1–8.
Lisovskii A, Nelkenbaum E, Volkis V, Semiat R, Eisen MS. Polymerization of isobutylene and copolymerization of isobutylene with isoprene promoted by methylalumoxane. Inorg Chim Acta. 2002;334:243–52.
Liu F, Wu W, Tran-Gyamfi MB, Jaryenneh JD, Zhuang X, Davis RW. Bioconversion of distillers’ grains hydrolysates to advanced biofuels by an Escherichia coli co-culture. Microb Cell Fact. 2017;16:1–14.
Liu J, Qi H, Wang C, Wen J. Model-driven intracellular redox status modulation for increasing isobutanol production in Escherichia coli. Biotechnol Biofuels. 2015;8:1–15.
Liu Q, Xu G, Wang X, Mu X. Selective upgrading of ethanol with methanol in water for the production of improved biofuel—isobutanol. Green Chem. 2016;18:2811–8.
Liu R, Liang L, Freed EF, Choudhury A, Eckert CA, Gill RT. Engineering regulatory networks for complex phenotypes in E. coli. Nat Commun. 2020;11:1–13.
Mahr R, GäTGENS C, GäTGENS J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng. 2015;32:184–94.
Maketov A, Davydov A, Suvorov B. The mechanism of isobutanol ammonolysis to isobutyronitrile on zinc oxide. Russ J Phys Chem. 1993;67:648–52.
Matsuda F, Ishii J, Kondo T, Ida K, Tezuka H, Kondo A. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Fact. 2013;12:1–11.
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis GJBA. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv. 2021;54:107795.
Meliawati M, Volke DC, Nikel PI, Schmid J. Engineering the carbon and redox metabolism of Paenibacillus polymyxa for efficient isobutanol production. Microb Biotechnol. 2024;17(3):e14438. https://doi.org/10.1111/1751-7915.14438.
Metzgar D, Wills C. Evidence for the adaptive evolution of mutation rates. Cell. 2000;101:581–4.
Mukherjee V, Lind U, St. Onge RP, Blomberg A, NYGåRD Y. A CRISPR interference screen of essential genes reveals that proteasome regulation dictates acetic acid tolerance in Saccharomyces cerevisiae. MSystems. 2021. https://doi.org/10.1128/msystems.00418-21.
Nawab S, Zhang Y, Ullah MW, Lodhi AF, Shah SB, Rahman MU, et al. Microbial host engineering for sustainable isobutanol production from renewable resources. Appl Microbiol Biotechnol. 2024;108:1–18.
Ni Z, Padilla R, Dos Santos Mello L, Nielsen M. Tuning ethanol upgrading toward primary or secondary alcohols by homogeneous catalysis. ACS Catal. 2023;13:5449–55.
Noda S, Mori Y, Oyama S, Kondo A, Araki M, Shirai T. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli. Microb Cell Fact. 2019;18:1–10.
Novak K, Baar J, Freitag P, PFLüGL S. Metabolic engineering of Escherichia coli W for isobutanol production on chemically defined medium and cheese whey as alternative raw material. J Ind Microbiol Biotechnol. 2020;47:1117–32.
Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, et al. Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol. 2015;81:2284–98.
Omidali M, Raisi A, Aroujalian A. Separation and purification of isobutanol from dilute aqueous solutions by a hybrid hydrophobic/hydrophilic pervaporation process. Chem Eng Process Process Intensif. 2014;77:22–9.
Otoupal PB, Chatterjee A. CRISPR gene perturbations provide insights for improving bacterial biofuel tolerance. Front Bioeng Biotechnol. 2018;6:122.
Oud B, Flores C-L, Gancedo C, Zhang X, Trueheart J, Daran J-M, et al. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact. 2012;11:1–10.
Oudshoorn A, van der Wielen LA, Straathof AJ. Assessment of options for selective 1-butanol recovery from aqueous solution. Ind Eng Chem Res. 2009;48:7325–36.
Priyadharshini S, Archana M, Angeline Kiruba D, Priyadharshini M. Production of isobutanol from Lactococcus lactis using valine catabolic degradation pathway. Int J Eng Technol Sci Res. 2015;2:72–81.
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152:1173–83.
Qiu M, Shen W, Yan X, He Q, Cai D, Chen S, et al. Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production. Biotechnol biofuels. 2020;13(1):15.
RYAN C. An overview of Gevo’s biobased isobutanol production process. Gevo. 2019. https://gevo.com/wp-content/uploads/2023/03/Gevo-WP_Isobutanol.5.26.23.pdf.
Saleski TE, Kerner AR, Chung MT, Jackman CM, Khasbaatar A, Kurabayashi K, et al. Syntrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metab Eng. 2019;54:232–43.
Sherkhanov S, Korman TP, Chan S, Faham S, Liu H, Sawaya MR, et al. Isobutanol production freed from biological limits using synthetic biochemistry. Nat Commun. 2020;11:1–10.
Shu L, Gu J, Wang Q, Sun S, Cui Y, Fell J, et al. The pyruvate decarboxylase activity of IpdC is a limitation for isobutanol production by Klebsiella pneumoniae. Biotechnol Biofuels Bioprod. 2022;15:1–14.
Siripong W, Wolf P, Kusumoputri TP, Downes JJ, Kocharin K, Tanapongpipat S, et al. Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate. Biotechnol Biofuels. 2018;11:1–16.
Smith KM, Cho K-M, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol. 2010;87:1045–55.
Songdech P, Butkinaree C, Yingchutrakul Y, Promdonkoy P, Runguphan W, Soontorngun N. Increased production of isobutanol from xylose through metabolic engineering of Saccharomyces cerevisiae overexpressing transcription factor Znf1 and exogenous genes. FEMS Yeast Res. 2024;24:foae006.
Sostaric N, Arslan A, Carvalho B, Plech M, Voordeckers K, Verstrepen KJ, et al. Integrated multi-omics analysis of mechanisms underlying yeast ethanol tolerance. J Proteome Res. 2021;20:3840–52.
Su Y, Shao W, Zhang A, Zhang W. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae. FEMS Yeast Res. 2021. https://doi.org/10.1093/femsyr/foab012.
Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, et al. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res. 2012;22:975–84.
Teshima M, Genth R, Bayaraa T, DöRING M, BEER B, SCHENK G, et al. Microfluidic-assisted evolution of a robust NAD+-dependent enzyme with improved isobutanol tolerance at elevated temperatures. Chemsuschem. 2025. https://doi.org/10.1002/cssc.202501120.
Trott O, Olson AJ. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.
Uchiyama T, Miyazaki K. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Appl Environ Microbiol. 2010;76:7029–35.
VALENTíNYI N, Mizsey P. Comparison of pervaporation models with simulation of hybrid separation processes. Period Polytech Chem Eng. 2014;58:7–14.
Wang M, Liu L, Fan L, Tan T. CRISPRi based system for enhancing 1-butanol production in engineered Klebsiella pneumoniae. Process Biochem. 2017;56:139–46.
Wang R, Zhao S, Wang Z, Koffas MA. Recent advances in modular co-culture engineering for synthesis of natural products. Curr Opin Biotechnol. 2020;62:65–71.
Wang Y, Xue P, Cao M, Yu T, Lane ST, Zhao H. Directed evolution: methodologies and applications. Chem Rev. 2021;121:12384–444.
Wei D, Xu J, Sun J, Shi J, Hao J, BIOTECHNOLOGY. 2-ketogluconic acid production by Klebsiella pneumoniae CGMCC 1.6366. J Ind Microbiol. 2013;40:561–70.
Wei D, Yuminaga Y, Shi J, Hao J. Non-capsulated mutants of a chemical-producing Klebsiella pneumoniae strain. Biotechnol Lett. 2018;40:679–87.
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv. 2019;37:538–68.
Wu Y, Jameel A, Xing X-H, Zhang C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol. 2022;40:38–59.
Xiao Q, Shi J, Wang L, Zhao G, Zhang Y. Coupling genome-wide continuous perturbation with biosensor screening reveals the potential targets in yeast isopentanol synthesis network. Synth Syst Biotechnol. 2025;10:452–62.
Xie H, Begum A, Gunn LH, Lindblad P. Directed evolution of α-ketoisovalerate decarboxylase for improved isobutanol and 3-methyl-1-butanol production in cyanobacteria. Biotechnol Biofuels Bioprod. 2025;18:1–17.
Xie H, Bourgade B, STENSJö K, LINDBLAD P. dCas12a-mediated CRISPR interference for multiplex gene repression in cyanobacteria for enhanced isobutanol and 3-methyl-1-butanol production. Microb Cell Fact. 2025;24:104.
Xie H, Lindblad P. Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production. Microb Cell Fact. 2022;21:17.
Xiu Z-L, Zeng A-P. Present state and perspective of downstream processing of biologically produced 1, 3-propanediol and 2, 3-butanediol. Appl Microbiol Biotechnol. 2008;78:917–26.
Xu J-R, Mehmood MA, Wang L, Ahmad N, Ma H-J. OMICs-based strategies to explore stress tolerance mechanisms of Saccharomyces cerevisiae for efficient fuel ethanol production. Front Energy Res. 2022;10:884582. https://doi.org/10.3389/fenrg.2022.884582.
Yang J, Kim JK, Ahn J-O, Song Y-H, Shin C-S, Park Y-C, et al. Isobutanol production from empty fruit bunches. Renew Energy. 2020;157:1124–30.
Yi C, Song W, Zhang Y, Qiu X. Liquid-liquid extraction of biobased isobutanol from an aqueous solution. J Chem Eng Data. 2019;64:2350–6.
Yi C, Zhang Y, Xie S, Song W, Qiu X. Salting-out extraction of bio-based isobutanol from an aqueous solution. J Chem Technol Biotechnol. 2018;93:372–84.
Yu H, Chen Z, Wang N, Yu S, Yan Y, Huo Y-X. Engineering transcription factor BmoR for screening butanol overproducers. Metab Eng. 2019;56:28–38.
Yu H, Wang N, Huo W, Zhang Y, Zhang W, Yang Y, et al. Establishment of BmoR-based biosensor to screen isobutanol overproducer. Microb Cell Fact. 2019;18:1–11.
Zhang H, Wang X. Modular co-culture engineering, a new approach for metabolic engineering. Metab Eng. 2016;37:114–21.
Zhang Y, Cortez JD, Hammer SK, CARRASCO-LóPEZ C, GARCíA ECHAURI SÁ, Wiggins JB, et al. Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Nat Commun. 2022;13:270.
Weitere Informationen
Isobutanol holds significant potential as a next-generation biofuel and platform chemical, offering a viable alternative to petroleum across various industries, including pharmaceuticals, and fine chemicals. Biosynthesis has emerged as a highly advantageous approach for isobutanol production, surpassing conventional chemical synthesis methods in terms of environmental sustainability, safety, and ecological compatibility. Consequently, the field of isobutanol biosynthesis has garnered increasing interest. This review provides an overview of recent breakthroughs in isobutanol biosynthesis and explores strategies aimed at improving its production yield from both biological and engineering perspectives. On the biological front, the exploration and optimization of enzymatic pathways, metabolic engineering techniques to enhance precursor availability and flux, and cellular engineering approaches to improve strain tolerance and production efficiency are meticulously analysed. Additionally, engineering aspects such as in situ product removal methods and biomass fermentation are introduced, as they significantly contribute to enhancing yields and economy. Despite the immense promise of isobutanol biosynthesis, several challenges require attention. The modification of enzymatic and metabolic pathways is crucial for increasing production efficiency and yield. The adoption of high-throughput screening techniques becomes indispensable for identifying and selecting optimal strains and enzymes with improved characteristics. Furthermore, the cytotoxic nature and volatility of isobutanol pose additional hurdles, leading to losses during the production process. By effectively addressing these challenges and advancing our understanding of isobutanol biosynthesis, we can pave the way for more efficient and sustainable production methods. This review aims to provide valuable insights and inspiration to researchers in the field, with the ultimate objective of accelerating the development and application of isobutanol biosynthesis.
(© 2025. The Author(s).)
Declarations. Competing interests: The authors declare no competing interests.