Treffer: Serial dependence is stronger for peripheral than for central vision.
Original Publication: Austin, Tex. : Psychonomic Society
Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 834–846. https://doi.org/10.1037/0096-1523.26.2.834. (PMID: 10.1037/0096-1523.26.2.83410811179)
Azzopardi, P., & Cowey, A. (1993). Preferential representation of the fovea in the primary visual cortex. Nature, 361(6414), 719–721. https://doi.org/10.1038/361719a0. (PMID: 10.1038/361719a07680108)
Barbosa, J., & Compte, A. (2020). Build-up of serial dependence in color working memory. Scientific Reports, 10, 10959. https://doi.org/10.1038/s41598-020-67861-2.
Barbosa, J., Stein, H., Martinez, R.L. et al. (2020). Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nature Neuroscience, 23, 1016–1024. https://doi.org/10.1038/s41593-020-0644-4.
Berens, P. (2009). Circstat: A MATLAB toolbox for circular statistics. Journal of Statistical Software, 31(10), 1–21. https://doi.org/10.18637/jss.v031.i10. (PMID: 10.18637/jss.v031.i10)
Bliss, D. P., Sun, J. J., & D’Esposito, M. (2017). Serial dependence is absent at the time of perception but increases in visual working memory. Scientific Reports, 7(1), 14739. https://doi.org/10.1038/s41598-017-15199-7. (PMID: 10.1038/s41598-017-15199-7291161325677003)
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357. (PMID: 10.1163/156856897X003579176952)
Braun, A., Urai, A. E., & Donner, T. H. (2018). Adaptive history biases result from confidence-weighted accumulation of past choices. Journal of Neuroscience, 38(10), 2418–2429. https://doi.org/10.1523/JNEUROSCI.2189-17.2017. (PMID: 10.1523/JNEUROSCI.2189-17.201729371318)
Carrasco, M., McElree, B., Denisova, K., & Giordano, A. M. (2003). Speed of visual processing increases with eccentricity. Nature Neuroscience, 6(7), 699–700. https://doi.org/10.1038/nn1079. (PMID: 10.1038/nn1079128197863077107)
Castiello, U., & Umiltà, C. (1992). Splitting focal attention. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 837–848. https://doi.org/10.1037/0096-1523.18.3.837. (PMID: 10.1037/0096-1523.18.3.8371500879)
Ceylan, G., Herzog, M. H., & Pascucci, D. (2021). Serial dependence does not originate from low-level visual processing. Cognition, 212, 104709. https://doi.org/10.1016/j.cognition.2021.104709. (PMID: 10.1016/j.cognition.2021.10470933838523)
Ceylan, G., & Pascucci, D. (2023). Attractive and repulsive serial dependence: The role of task relevance, the passage of time, and the number of stimuli. Journal of Vision, 23(6), 8. https://doi.org/10.1167/jov.23.6.8. (PMID: 10.1167/jov.23.6.83731844110278548)
Cicchini, G. M., Anobile, G., & Burr, D. C. (2014). Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform. Proceedings of the National Academy of Sciences of the United States of America, 111(21), 7867–7872. https://doi.org/10.1073/pnas.1402785111. (PMID: 10.1073/pnas.1402785111248217714040572)
Cicchini, G. M., Benedetto, A., & Burr, D. C. (2021). Perceptual history propagates down to early levels of sensory analysis. Current Biology, 31(6), 1245-1250.e2. https://doi.org/10.1016/j.cub.2020.12.004. (PMID: 10.1016/j.cub.2020.12.004333736397987721)
Cicchini, G. M., Mikellidou, K., & Burr, D. C. (2018). The functional role of serial dependence. Proceedings of the Royal Society b: Biological Sciences, 285(1890), 20181722. https://doi.org/10.1098/rspb.2018.1722. (PMID: 10.1098/rspb.2018.17226235035)
Cicchini, G. M., Mikellidou, K., & Burr, D. C. (2024). Serial dependence in perception. Annual Review of Psychology, 75(1), 129–154. https://doi.org/10.1146/annurev-psych-021523-104939.
Cowey, A., & Rolls, E. (1974). Human cortical magnification factor and its relation to visual acuity. Experimental Brain Research, 21(5), 447–454. https://doi.org/10.1007/BF00237163. (PMID: 10.1007/BF002371634442497)
Curcio, C. A., & Allen, K. A. (1990). Topography of ganglion cells in human retina. The Journal of Comparative Neurology, 300(1), 5–25. https://doi.org/10.1002/cne.903000103. (PMID: 10.1002/cne.9030001032229487)
Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Human photoreceptor topography. The Journal of Comparative Neurology, 292(4), 497–523. https://doi.org/10.1002/cne.902920402. (PMID: 10.1002/cne.9029204022324310)
Collins, T. (2019). The perceptual continuity field is retinotopic. Scientific Reports, 9(1), 18841. https://doi.org/10.1038/s41598-019-55134-6. (PMID: 10.1038/s41598-019-55134-6318271386906435)
Collins, T. (2022). Serial dependence occurs at the level of both features and integrated object representations. Journal of Experimental Psychology: General, 151(8), 1821–1832. https://doi.org/10.1037/xge0001159. (PMID: 10.1037/xge000115934843364)
Daniel, P. M., & Whitteridge, D. (1961). The representation of the visual field on the cerebral cortex in monkeys. The Journal of Physiology, 159, 203–221. https://doi.org/10.1113/jphysiol.1961.sp006803. (PMID: 10.1113/jphysiol.1961.sp006803138833911359500)
Donk, M., van Heusden, E., & Olivers, C. N. L. (2024). Retinal eccentricity modulates saliency-driven but not relevance-driven visual selection. Attention, Perception, & Psychophysics, 86(5), 1609–1620. https://doi.org/10.3758/s13414-024-02848-z. (PMID: 10.3758/s13414-024-02848-z)
Dumoulin, S. O., & Wandell, B. A. (2008). Population receptive field estimates in human visual cortex. NeuroImage, 39(2), 647–660. https://doi.org/10.1016/j.neuroimage.2007.09.034. (PMID: 10.1016/j.neuroimage.2007.09.03417977024)
Egly, R., & Homa, D. (1984). Sensitization of the visual field. Journal of Experimental Psychology: Human Perception and Performance, 10(6), 778–793. https://doi.org/10.1037/0096-1523.10.6.778. (PMID: 10.1037/0096-1523.10.6.7786239906)
Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature Neuroscience, 17(5), 738–743. https://doi.org/10.1038/nn.3689. (PMID: 10.1038/nn.3689246867854012025)
Freeman, J., & Simoncelli, E. P. (2011). Metamers of the ventral stream. Nature Neuroscience, 14(9), 1195–1201. https://doi.org/10.1038/nn.2889. (PMID: 10.1038/nn.2889218417763164938)
Fritsche, M., & de Lange, F. P. (2019). The role of feature-based attention in visual serial dependence. Journal of Vision, 19(13), 21. https://doi.org/10.1167/19.13.21. (PMID: 10.1167/19.13.2131770772)
Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent history on perception and decision. Current Biology: CB, 27(4), 590–595. https://doi.org/10.1016/j.cub.2017.01.006. (PMID: 10.1016/j.cub.2017.01.00628162897)
Fritsche, M., Spaak, E., & de Lange, F. P. (2020). A bayesian and efficient observer model explains concurrent attractive and repulsive history biases in visual perception. eLife, 9, e55389. https://doi.org/10.7554/eLife.55389. (PMID: 10.7554/eLife.55389324792647286693)
Gallagher, G. K., & Benton, C. P. (2022). Stimulus uncertainty predicts serial dependence in orientation judgements. Journal of Vision, 22(1), Article 6. https://doi.org/10.1167/jov.22.1.6. (PMID: 10.1167/jov.22.1.6350199548762691)
Golomb, J. D., & Mazer, J. A. (2021). Visual remapping. Annual Review of Vision Science, 7, 257–277. https://doi.org/10.1146/annurev-vision-032321-100012. (PMID: 10.1146/annurev-vision-032321-100012342420559255256)
Harrison, W. J., & Bays, P. M. (2018). Visual working memory is independent of the cortical spacing between memoranda. Journal of Neuroscience, 38(12), 3116-3123. https://doi.org/10.1523/JNEUROSCI.2645-17.2017.
Herwig, A., & Schneider, W. X. (2014). Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General, 143(5), 1903–1922. https://doi.org/10.1037/a0036781. (PMID: 10.1037/a003678124820249)
Horton, J. C., & Hoyt, W. F. (1991). The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Archives of Ophthalmology, 109(6), 816–824. https://doi.org/10.1001/archopht.1991.01080060080030. (PMID: 10.1001/archopht.1991.010800600800302043069)
Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43(3), 171–216. https://doi.org/10.1006/cogp.2001.0755. (PMID: 10.1006/cogp.2001.075511689021)
JASP Team. (2024). JASP (Version 0.18.3)[Computer software].
John-Saaltink, E. S., Kok, P., Lau, H. C., & De Lange, F. P. (2016). Serial dependence in perceptual decisions is reflected in activity patterns in primary visual cortex. The Journal of Neuroscience, 36(23), 6186–6192. https://doi.org/10.1523/JNEUROSCI.4390-15.2016. (PMID: 10.1523/JNEUROSCI.4390-15.2016)
Kandemir, G., & Olivers, C. N. L. (2024). Comparing neural correlates of memory encoding and maintenance for foveal and peripheral stimuli. Journal of Cognitive Neuroscience, 36(9), 1807–1826. https://doi.org/10.1162/jocn_a_02203. (PMID: 10.1162/jocn_a_022033894072411324249)
Kiyonaga, A., & Egner, T. (2013). Working memory as internal attention: Toward an integrative account of internal and external selection processes. Psychonomic Bulletin & Review, 20, 228–242. https://doi.org/10.3758/s13423-012-0359-y. (PMID: 10.3758/s13423-012-0359-y)
Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in psychtoolbox-3. Perception, 36(14), 1–16. https://doi.org/10.1068/v070821. (PMID: 10.1068/v070821)
LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance, 9(3), 371–379. https://doi.org/10.1037/0096-1523.9.3.371. (PMID: 10.1037/0096-1523.9.3.3716223977)
LaBerge, D., & Brown, V. (1986). Variations in size of the visual field in which targets are presented: An attentional range effect. Perception & Psychophysics, 40(3), 188–200. https://doi.org/10.3758/BF03203016. (PMID: 10.3758/BF03203016)
Levi, D. M. (2008). Crowding—an essential bottleneck for object recognition: A mini-review. Vision Research, 48(5), 635–654. https://doi.org/10.1016/j.visres.2007.12.009. (PMID: 10.1016/j.visres.2007.12.009182268282268888)
Linnell, K. J., & Humphreys, G. W. (2004). Attentional selection of a peripheral ring overrules the central attentional bias. Perception & Psychophysics, 66(5), 743–751. https://doi.org/10.3758/BF03194969. (PMID: 10.3758/BF03194969)
Manassi, M., Murai, Y., & Whitney, D. (2023). Serial dependence in visual perception: A meta-analysis and review. Journal of Vision, 23(8), 18. https://doi.org/10.1167/jov.23.8.18. (PMID: 10.1167/jov.23.8.183764263910476445)
Manassi, M., & Whitney, D. (2024). Continuity fields enhance visual perception through positive serial dependence. Nature Reviews Psychology, 3, 352–366. https://doi.org/10.1038/s44159-024-00297-x. (PMID: 10.1038/s44159-024-00297-x)
Melcher, D. (2007). Predictive remapping of visual features precedes saccadic eye movements. Nature Neuroscience, 10(7), 903–907. https://doi.org/10.1038/nn1917. (PMID: 10.1038/nn191717589507)
Mikellidou, K., Cicchini, G. M., Burr, D. C. (2021). Perceptual history acts in world-centred coordinates. i-Perception, 12(5). https://doi.org/10.1177/20416695211029301.
Oletto, C. M., Contemori, G., Bertamini, M., & Battaglini, L. (2023). The role of foveal cortex in discriminating peripheral stimuli: The sketchpad hypothesis. NeuroSci, 4(1), 9–17. https://doi.org/10.3390/neurosci4010002. (PMID: 10.3390/neurosci401000239484295)
Olivers, C. N. (2008). Interactions between visual working memory and visual attention. Frontiers in Bioscience, 13(3), 1182–1191. https://doi.org/10.2741/2754. (PMID: 10.2741/275417981622)
Olivers, C. N. (2025). Selective attention and eccentricity: A comprehensive review. Neuroscience and Biobehavioral RevieWs. https://doi.org/10.1016/j.neubiorev.2025.106368. (PMID: 10.1016/j.neubiorev.2025.10636840930336)
Olivers, C. N. L., Kandemir, G., & van Heusden, E. (in press). Eccentricity determines the competition for attention.
Pascucci, D., Mancuso, G., Santandrea, E., Della Libera, C., Plomp, G., & Chelazzi, L. (2019). Laws of concatenated perception: Vision goes for novelty, decisions for perseverance. PLoS Biology, 17(3), e3000144. https://doi.org/10.1371/journal.pbio.3000144. (PMID: 10.1371/journal.pbio.3000144308357206400421)
Pascucci, D., & Plomp, G. (2021). Serial dependence and representational momentum in single-trial perceptual decisions. Scientific Reports, 11, 9910. https://doi.org/10.1038/s41598-021-89432-9. (PMID: 10.1038/s41598-021-89432-9339726698110769)
Pascucci, D., Tanrikulu, Ö. D., Ozkirli, A., Houborg, C., Ceylan, G., Zerr, P., & Kristjánsson, Á. (2023). Serial dependence in visual perception: A review. Journal of Vision, 23(1), 9. https://doi.org/10.1167/jov.23.1.9. (PMID: 10.1167/jov.23.1.9366484189871508)
Pelli, D. G. (2008). Crowding: A cortical constraint on object recognition. Current Opinion in Neurobiology, 18(4), 445–451. https://doi.org/10.1016/j.conb.2008.09.008. (PMID: 10.1016/j.conb.2008.09.008188353553624758)
Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11(10), 1129–1135. https://doi.org/10.1038/nn.2187. (PMID: 10.1038/nn.2187188281912772078)
Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements. Nature Neuroscience, 14(2), 252–256. https://doi.org/10.1038/nn.2711. (PMID: 10.1038/nn.271121186360)
Rosenholtz, R. (2016). Capabilities and limitations of peripheral vision. ANnual Review of Vision Science, 2, 437–457. https://doi.org/10.1146/annurev-vision-082114-035733. (PMID: 10.1146/annurev-vision-082114-03573328532349)
Rovamo, J., & Virsu, V. (1979). An estimation and application of the human cortical magnification factor. Experimental Brain Research, 37(3), 495–510. https://doi.org/10.1007/BF00236819. (PMID: 10.1007/BF00236819520439)
Samaha, J., Switzky, M., & Postle, B. R. (2019). Confidence boosts serial dependence in orientation estimation. Journal of Vision, 19(4), 25. https://doi.org/10.1167/19.4.25. (PMID: 10.1167/19.4.25310095266690400)
Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Peripheral vision and pattern recognition: A review. Journal of Vision, 11(5), 13, 1–82. https://doi.org/10.1167/11.5.13.
Staugaard, C. F., Petersen, A., & Vangkilde, S. (2016). Eccentricity effects in vision and attention. Neuropsychologia, 92, 69–78. https://doi.org/10.1016/j.neuropsychologia.2016.06.020. (PMID: 10.1016/j.neuropsychologia.2016.06.020273422585127899)
Stewart, E. E. M., Valsecchi, M., & Schütz, A. C. (2020). A review of interactions between peripheral and foveal vision. Journal of Vision, 20(12), 2. https://doi.org/10.1167/jov.20.12.2. (PMID: 10.1167/jov.20.12.2331411717645222)
Suárez-Pinilla, M., Seth, A. K., & Roseboom, W. (2018). Serial dependence in the perception of visual variance. Journal of Vision, 18(7), 4. https://doi.org/10.1167/18.7.4. (PMID: 10.1167/18.7.4299713506028984)
van Bergen, R. S., & Jehee, J. F. M. (2019). Probabilistic representation in human visual cortex reflects uncertainty in serial decisions. The Journal of Neuroscience, 39(41), 8164–8176. https://doi.org/10.1523/JNEUROSCI.3212-18.2019. (PMID: 10.1523/JNEUROSCI.3212-18.2019314814356786811)
van Heusden, E., Donk, M., & Olivers, C. N. L. (2021). The dynamics of saliency-driven and goal-driven visual selection as a function of eccentricity. Journal of Vision, 21(3), 1–24. https://doi.org/10.1167/jov.21.3.2. (PMID: 10.1167/jov.21.3.2)
van Heusden, E., Olivers, C. N. L., & Donk, M. (2023). The eyes prefer targets nearby fixation: Quantifying eccentricity-dependent attentional biases in oculomotor selection. Vision Research, 205, 108177. https://doi.org/10.1016/j.visres.2023.108177. (PMID: 10.1016/j.visres.2023.10817736669432)
van Heusden, E., Olivers, C. N. L., & Donk, M. (2024). The effects of eccentricity on attentional capture. Attention, Perception, & Psychophysics, 86(2), 422–438. https://doi.org/10.3758/s13414-023-02735-z. (PMID: 10.3758/s13414-023-02735-z)
Weldon, K. B., Rich, A. N., Woolgar, A., & Williams, M. A. (2016). Disruption of foveal space impairs discrimination of peripheral objects. Frontiers in Psychology, 7, 699. https://doi.org/10.3389/fpsyg.2016.00699. (PMID: 10.3389/fpsyg.2016.00699272426124862972)
Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in cognitive sciences, 15(4), 160-168. https://doi.org/10.1016/j.tics.2011.02.005.
Williams, M. A., Baker, C. I., Op de Beeck, H. P., Shim, W. M., Dang, S., Triantafyllou, C., & Kanwisher, N. (2008). Feedback of visual object information to foveal retinotopic cortex. Nature Neuroscience, 11(12), 1439–1445. https://doi.org/10.1038/nn.2218. (PMID: 10.1038/nn.2218189787802789292)
Wolfe, J. M., O’Neill, P., & Bennett, S. C. (1998). Why are there eccentricity effects in visual search? Visual and attentional hypotheses. Perception & Psychophysics, 60(1), 140–156. https://doi.org/10.3758/bf03211924. (PMID: 10.3758/bf03211924)
Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic hidden states underlying working-memory-guided behavior. Nature Neuroscience, 20, 864–871. https://doi.org/10.1038/nn.4546. (PMID: 10.1038/nn.4546284143335446784)
Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72–75. https://doi.org/10.1038/23936. (PMID: 10.1038/239369817201)
You, F.-H., Gong, X.-M., & Sun, Q. (2023). Serial dependencies between form orientation and motion direction are asymmetric. Frontiers in Psychology, 14, 1248307. https://doi.org/10.3389/fpsyg.2023.1248307. (PMID: 10.3389/fpsyg.2023.12483073774457610512465)
Weitere Informationen
Serial dependence in vision refers to the fact that perceptual judgements are biased by earlier experiences, and has been thought to reduce sensory uncertainty and sustain perceptual continuity over time and space. While vision changes with eccentricity, little is known about if and how serial dependence differs in the periphery relative to fovea. Here we aimed to reduce this gap by comparing serial dependence for centrally and peripherally presented stimuli. Experiment 1 presents a reanalysis of an existing dataset from an earlier working memory task requiring the memorization of differently oriented gratings, presented either centrally or at 15° eccentricity. Experiment 2 also varied pre-knowledge of the item's location through spatial cueing. Experiment 3 replicated Experiment 1 but with lower contrast levels and equating the probabilities of central and peripheral stimuli. Across all experiments we observed an attractive bias towards the orientation of the preceding trial at all locations. Crucially, this bias was always larger in the periphery relative to the central position, and it was mainly the current item's location that drove this effect, rather than the previous item's location. Pre-knowledge of item location failed to influence the eccentricity effect serial dependence, nor did reduced contrast or differential probabilities change the conclusions. Our results thus demonstrate that serial dependence is not equal across eccentricity. The data and the scripts are available at: https://osf.io/v56hn/?view_only=6d4d5bba493b4bc788c3eed8decd8370.
(© 2026. The Psychonomic Society, Inc.)
Declarations. Competing interests: The authors have no competing or conflicting interests to declare. Ethics approval: The studies were conducted under umbrella protocol VCWE-2021–009 as approved by the Scientific and Ethics Review Board of the Faculty of Behavioural and Movement Sciences at the Vrije Universiteit Consent to participate. Participants provided informed consent prior to participation. Consent for publication: Participants provided consent for the public sharing and use of the anonymized research data. No personal data are being published or publicly shared at https://osf.io/v56hn/?view_only=6d4d5bba493b4bc788c3eed8decd8370 . Open practices statement: The data, scripts for analyses and the output of analyses for all experiments are available online ( https://osf.io/v56hn/?view_only=6d4d5bba493b4bc788c3eed8decd8370 ). Neither of the experiments were preregistered.