Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Statistical learning and the efficiency of visual search.

Title:
Statistical learning and the efficiency of visual search.
Authors:
Anderson BA; Department of Psychology, Texas A&M University, TAMU, 4235, College Station, TX, 77843-4235, USA. brian.anderson@tamu.edu.
Source:
Attention, perception & psychophysics [Atten Percept Psychophys] 2026 Jan 13; Vol. 88 (2), pp. 47. Date of Electronic Publication: 2026 Jan 13.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Springer Country of Publication: United States NLM ID: 101495384 Publication Model: Electronic Cited Medium: Internet ISSN: 1943-393X (Electronic) Linking ISSN: 19433921 NLM ISO Abbreviation: Atten Percept Psychophys Subsets: MEDLINE
Imprint Name(s):
Publication: 2011- : New York : Springer
Original Publication: Austin, Tex. : Psychonomic Society
References:
Anderson, B. A. (2024). Trichotomy revisited: A monolithic theory of attentional control. Vision Research, 217, Article 108366. (PMID: 383872621152355410.1016/j.visres.2024.108366)
Anderson, B. A., & Britton, M. K. (2020). On the automaticity of attentional orienting to threatening stimuli. Emotion, 20, 1109–1112. (PMID: 3086993810.1037/emo0000596)
Anderson, B. A., & Halpern, M. (2017). On the value-dependence of value-driven attentional capture. Attention, Perception, & Psychophysics, 79, 1001–1011. (PMID: 10.3758/s13414-017-1289-6)
Anderson, B. A., Kim, H., Kim, A. J., Liao, M.-R., Mrkonja, L., Clement, A., & Grégoire, L. (2021). The past, present, and future of selection history. Neuroscience and Biobehavioral Reviews, 130, 326–350. (PMID: 34499927851117910.1016/j.neubiorev.2021.09.004)
Anderson, B. A., & Lee, D. S. (2023). Visual search as effortful work. Journal Of Experimental Psychology: General, 152, 1580–1597. (PMID: 3671614210.1037/xge0001334)
Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367-10371. https://doi.org/10.1073/pnas.110404710.
Ásgeirsson, Á. G., Kristjánsson, Á., & Bundesen, C. (2014). Independent priming of location and color in identification of briefly presented letters. Attention, Perception, & Psychophysics, 76, 40–48. (PMID: 10.3758/s13414-013-0546-6)
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. (PMID: 22795563342635410.1016/j.tics.2012.06.010)
Bahle, B., Kershner, A. M., & Hollingworth, A. (2021). Categorical cuing: Object categories structure the acquisition of statistical regularities to guide visual search. Journal of Experimental Psychology: General, 150, 2552–2566. (PMID: 3382982310.1037/xge0001059)
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. (PMID: 917695210.1163/156856897X00357)
Britton, M. K., & Anderson, B. A. (2021). Attentional avoidance of threatening stimuli. Psychological Research, 85, 82–90. (PMID: 3160520410.1007/s00426-019-01255-6)
Brockmole, J. R., & Henderson, J. M. (2006a). Recognition and attentional guidance during contextual cueing in real-world scenes: Evidence from eye movements. The Quarterly Journal of Experimental Psychology, 59, 1177–1187. (PMID: 1676961810.1080/17470210600665996)
Brockmole, J. R., & Henderson, J. M. (2006). Using real-world scenes as contextual cues for search. Visual Cognition, 13, 99–108. (PMID: 10.1080/13506280500165188)
Brockmole, J. R., Castelhano, M. S., & Henderson, J. M. (2006). Contextual cueing in natural scenes: Global and local contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 699–706. (PMID: 16822141)
Brooks, D. I., Rasmussen, I. P., & Hollingworth, A. (2010). The nesting of search context within natural scenes: Evidence from contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 36, 1406–1418. (PMID: 20731525)
Campana, G., & Casco, C. (2009). Repetition effects of features and spatial position: Evidence for dissociable mechanisms. Spatial Vision, 22, 325–338. (PMID: 1962228710.1163/156856809788746318)
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 153, 196–210. (PMID: 2723216310.1016/j.cognition.2016.04.018)
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017a). Learning features in a complex and changing environment: A distribution-based framework for visual attention and vision in general. Progress in Brain Research, 236, 97–120. (PMID: 2915742010.1016/bs.pbr.2017.07.001)
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017b). Rapid learning of visual ensembles. Journal of Vision, 17(2), 21. (PMID: 2824550010.1167/17.2.21)
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017). Representing color ensembles. Psychological Science, 28, 1510–1517. (PMID: 2886292310.1177/0956797617713787)
Cosman, J. D., & Vecera, S. P. (2014). Establishment of an attentional set via statistical learning. Journal Of Experimental Psychology: Human Perception And Performance, 40, 1–6. (PMID: 24099589)
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. (PMID: 760506110.1146/annurev.ne.18.030195.001205)
Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. (PMID: 275606710.1037/0033-295X.96.3.433)
Duncan, D. H., van Moorselaar, D., & Theeuwes, J. (2023). Pinging the brain to reveal the hidden attentional priority map using encephalography. Nature Communications, 14, Article 4749. (PMID: 375503101040683310.1038/s41467-023-40405-8)
Failing, M., Feldmann-Wustefeld, T., Wang, B., Olivers, C., & Theeuwes, J. (2019). Statistical regularities induce spatial as well as feature-specific suppression. Journal of Experimental Psychology: Human Perception and Performance, 45, 1291–1303. (PMID: 31157536)
Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E., & Chelazzi, L. (2018). Altering spatial priority maps via statistical learning of target selection and distractor filtering. Cortex, 102, 67–95. (PMID: 2909687410.1016/j.cortex.2017.09.027)
Ferrante, O., Chelazzi, L., & Santandrea, E. (2023). Statistical learning of target and distractor spatial probability shape a common attentional priority computation. Cortex, 169, 95–117. (PMID: 3786606210.1016/j.cortex.2023.08.013)
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044. (PMID: 1431742)
Found, A., Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a “dimension- weighting” account. Perception & Psychophysics 58, 88–101. https://doi.org/10.3758/BF03205479 .
Hayden, B. Y., & Gallant, J. L. (2005). Time course of attention reveals different mechanisms for spatial and feature-based attention in area V4. Neuron, 47, 637–643. (PMID: 1612939410.1016/j.neuron.2005.07.020)
Hillyard, S. A., & Münte, T. F. (1984). Selective attention to color and location: An analysis with event-related brain potentials. Perception and Psychophysics, 36, 185–198. (PMID: 651452810.3758/BF03202679)
Huang, C., Donk, M., & Theeuwes, J. (2022). Proactive enhancement and suppression elicited by statistical regularities in visual search. Journal of Experimental Psychology: Human Perception and Performance, 48, 443–457. (PMID: 35324244)
Jiang, Y. V., & Swallow, K. M. (2013). Spatial reference frame of incidentally learned attention. Cognition, 126, 378–390. (PMID: 2328741910.1016/j.cognition.2012.10.011)
Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013). Rapid acquisition but slow extinction of an attentional bias in space. Journal Of Experimental Psychology: Human Perception And Performance, 39, 87–99. (PMID: 22428675)
Jiang, Y. V., Won, B.-Y., & Swallow, K. M. (2014). First saccadic eye movement reveals persistent attentional guidance by implicit learning. Journal Of Experimental Psychology: Human Perception And Performance, 40, 1161–1173. (PMID: 24512610)
Kim, H., & Anderson, B. A. (2019a). Dissociable components of experience-driven attention. Current Biology, 29, 841–845. (PMID: 3077336610.1016/j.cub.2019.01.030)
Kim, H., & Anderson, B. A. (2019b). Dissociable neural mechanisms underlie value-driven and selection-driven attentional capture. Brain Research, 1708, 109–115. (PMID: 3046872610.1016/j.brainres.2018.11.026)
Kim, H., & Anderson, B. A. (2021). Combined influence of valence and statistical learning on the control of attention: Evidence for independent sources of bias. Cognition, 208, Article 104554. (PMID: 3336096110.1016/j.cognition.2020.104554)
Kim, A. J., & Anderson, B. A. (2022). Systemic effects of selection history on learned ignoring. Psychonomic Bulletin & Review, 29, 1347–1354. (PMID: 10.3758/s13423-021-02050-4)
Kim, H., Ogden, A., & Anderson, B. A. (2023). Statistical learning of distractor shape modulates attentional capture. Vision Research, 202, 108155. (PMID: 3641781010.1016/j.visres.2022.108155)
Kristjansson, A., & Campana, G. (2010). Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, & Psychophysics, 72, 5–18. (PMID: 10.3758/APP.72.1.5)
Le Pelley, M. E., Ung, R., Mine, C., Most, S. B., Watson, P., Pearson, D., & Theeuwes, J. (2022). Reward learning and statistical learning independently influence attentional priority of salient distractors in visual search. Attention, Perception, & Psychophysics, 84, 1446–1459. (PMID: 10.3758/s13414-021-02426-7)
Ling, S., Liu, T., & Carrasco, M. (2009). How spatial and feature-based attention affect the gain and tuning of population responses. Vision Research, 49, 1194–1204. (PMID: 1859075410.1016/j.visres.2008.05.025)
Liu, T., Stevens, S. T., & Carrasco, M. (2007). Comparing the time course and efficacy of spatial and feature-based attention. Vision Research, 47, 108–113. (PMID: 1708798710.1016/j.visres.2006.09.017)
Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672. (PMID: 10.3758/BF03209251)
Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: Part II. The role of position. Perception and Psychophysics, 58, 977–991. (PMID: 892083510.3758/BF03206826)
Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–1035. (PMID: 14585020)
Sagi, D. (2011). Perceptual learning in vision research. Vision Research, 51, 1552–1566. (PMID: 2097416710.1016/j.visres.2010.10.019)
Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition and Emotion, 29, 687–694. (PMID: 2489911710.1080/02699931.2014.924484)
Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends in Cognitive Sciences, 10, 38–45. (PMID: 1631892210.1016/j.tics.2005.11.008)
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing II: Perceptual learning, automatic attending, and general theory. Psychological Review, 84, 127–190. (PMID: 10.1037/0033-295X.84.2.127)
Stilwell, B. T., & Vecera, S. P. (2020). Learned distractor rejection in the face of strong target guidance. Journal of Experimental Psychology: Human Perception and Performance, 46, 926–941. (PMID: 32391708)
Stilwell, B. T., Bahle, B., & Vecera, S. P. (2019). Feature-based statistical regularities of distractors modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 45, 419–433. (PMID: 30802131)
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception and Psychophysics, 51, 599–606. (PMID: 162057110.3758/BF03211656)
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99. (PMID: 2050782810.1016/j.actpsy.2010.02.006)
Theeuwes, J., Bogaerts, L., & van Moorselaar, D. (2022). What to expect where and when: How statistical learning drives visual selection. Trends in Cognitive Sciences, 26, 860–872. (PMID: 3584047610.1016/j.tics.2022.06.001)
Võ, M.L.-H., Boettcher, S. E. P., & Draschkow, D. (2019). Reading scenes: How scene grammar guides attention and aids perception in real-world environments. Current Opinion in Psychology, 29, 205–210. (PMID: 3105143010.1016/j.copsyc.2019.03.009)
Wang, B., & Theeuwes, J. (2018). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44, 13–17. (PMID: 29309194)
Wang, B., van Driel, J., Ort, E., & Theeuwes, J. (2019). Anticipatory distractor suppression elicited by statistical regularities in visual search. Journal of Cognitive Neuroscience, 31, 1535–1548. (PMID: 3118026510.1162/jocn_a_01433)
Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238. (PMID: 10.3758/BF03200774)
Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9, 33–39. (PMID: 10.1111/1467-9280.00006)
Wolfe, J. M. (2020). Visual search: How do we find what we are looking for? Annual Review of Vision Science. https://doi.org/10.1146/annurev-vision-091718-015048. (PMID: 10.1146/annurev-vision-091718-01504832320631)
Wolfe, J. M. (2021). Guided search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4), 1060–1092. (PMID: 10.3758/s13423-020-01859-9)
Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1, Article 0058. (PMID: 36711068987933510.1038/s41562-017-0058)
Contributed Indexing:
Keywords: Feature-based attention; Search efficiency; Search guidance; Selection history; Selective attention; Spatial attention
Entry Date(s):
Date Created: 20260112 Date Completed: 20260113 Latest Revision: 20260112
Update Code:
20260113
DOI:
10.3758/s13414-025-03219-y
PMID:
41526764
Database:
MEDLINE

Weitere Informationen

Target selection and distractor suppression can be facilitated through learning-dependent processes. Targets are found faster when appearing in a high-probability color or location and distractors produce less interference when appearing in a high-probability color or location. Such effects of statistical learning on attention have been demonstrated almost exclusively in the context of paradigms that do not systematically vary the number of items in the display, precluding assessment of learning-dependent changes in the efficiency of search through successive items, or search guidance. In the present study, I directly measured the influence of statistical learning on search guidance. In Experiment 1, target color and location were manipulated orthogonally, such that the target could appear in a high-probability color, a high-probability location, both, or neither. Location-based and feature-based statistical learning were found to produce additive benefits for search guidance, each reducing search slope, while only location-based learning reduced search intercept. In Experiment 2, the target was never rendered in a particular color, which resulted in participants to some degree filtering items of this color during search, producing a benefit that scaled with the number of items of the critical color presented in the display (i.e., reducing effective set size). Together, the results of the present study highlight an important role for selection history in facilitating search guidance.
(© 2026. The Psychonomic Society, Inc.)

Declarations. Competing interests: The author declares no competing interests. Ethics approval: All procedures were approved by the Texas A&M University Institutional Review Board (IRB2016-0549D). Consent to participate: All participants provided written informed consent. Consent for publication: Brian A. Anderson is solely responsible for the contents of this article.