Treffer: Self-organizing tree-growing network for the classification of protein sequences.

Title:
Self-organizing tree-growing network for the classification of protein sequences.
Authors:
Wang HC; Centro Nacional de Biotecnologia-CSIC, Universidad Autonoma, Madrid, Spain., Dopazo J, de la Fraga LG, Zhu YP, Carazo JM
Source:
Protein science : a publication of the Protein Society [Protein Sci] 1998 Dec; Vol. 7 (12), pp. 2613-22.
Publication Type:
Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
Language:
English
Journal Info:
Publisher: Cold Spring Harbor Laboratory Press Country of Publication: United States NLM ID: 9211750 Publication Model: Print Cited Medium: Print ISSN: 0961-8368 (Print) Linking ISSN: 09618368 NLM ISO Abbreviation: Protein Sci Subsets: MEDLINE
Imprint Name(s):
Publication: 2001- : Woodbury, NY : Cold Spring Harbor Laboratory Press
Original Publication: New York, N.Y. : Cambridge University Press, c1992-
References:
Comput Appl Biosci. 1991 Jul;7(3):353-7. (PMID: 1913218)
Protein Sci. 1994 Mar;3(3):507-21. (PMID: 8019421)
Comput Chem. 1997;21(4):237-56. (PMID: 9415987)
Proc Natl Acad Sci U S A. 1990 Sep;87(18):6934-8. (PMID: 2169613)
J Mol Biol. 1991 Aug 20;220(4):877-87. (PMID: 1880802)
Biol Cybern. 1991;65(6):451-8. (PMID: 1958730)
Comput Appl Biosci. 1996 Dec;12(6):447-54. (PMID: 9021261)
Comput Appl Biosci. 1992 Feb;8(1):39-44. (PMID: 1314686)
Cytokine. 1993 Mar;5(2):95-106. (PMID: 8392875)
Comput Appl Biosci. 1993 Dec;9(6):671-80. (PMID: 8143153)
Nucleic Acids Res. 1982 May 11;10(9):2997-3011. (PMID: 7048259)
Cytokine. 1995 Oct;7(7):679-88. (PMID: 8580377)
Curr Biol. 1993 Sep 1;3(9):573-81. (PMID: 15335670)
Protein Sci. 1992 May;1(5):667-77. (PMID: 1304365)
Nat Struct Biol. 1995 Feb;2(2):171-8. (PMID: 7749921)
Biol Cybern. 1997 Jun;76(6):441-50. (PMID: 9263431)
Comput Appl Biosci. 1996 Apr;12(2):109-18. (PMID: 8744773)
J Mol Evol. 1997 Feb;44(2):226-33. (PMID: 9069183)
J Biol Chem. 1994 Apr 29;269(17):12874-9. (PMID: 8175703)
Comput Appl Biosci. 1993 Dec;9(6):687-93. (PMID: 8143155)
J Immunol. 1996 Feb 1;156(3):1062-70. (PMID: 8557980)
Substance Nomenclature:
0 (Cytochrome c Group)
0 (Hemoglobins)
0 (Interleukins)
0 (Proteins)
0 (Receptors, Interleukin)
EC 5.3.1.1 (Triose-Phosphate Isomerase)
Entry Date(s):
Date Created: 19981229 Date Completed: 19990303 Latest Revision: 20240109
Update Code:
20250114
PubMed Central ID:
PMC2143887
DOI:
10.1002/pro.5560071215
PMID:
9865956
Database:
MEDLINE

Weitere Informationen

The self-organizing tree algorithm (SOTA) was recently introduced to construct phylogenetic trees from biological sequences, based on the principles of Kohonen's self-organizing maps and on Fritzke's growing cell structures. SOTA is designed in such a way that the generation of new nodes can be stopped when the sequences assigned to a node are already above a certain similarity threshold. In this way a phylogenetic tree resolved at a high taxonomic level can be obtained. This capability is especially useful to classify sets of diversified sequences. SOTA was originally designed to analyze pre-aligned sequences. It is now adapted to be able to analyze patterns associated to the frequency of residues along a sequence, such as protein dipeptide composition and other n-gram compositions. In this work we show that the algorithm applied to these data is able to not only successfully construct phylogenetic trees of protein families, such as cytochrome c, triosephophate isomerase, and hemoglobin alpha chains, but also classify very diversified sequence data sets, such as a mixture of interleukins and their receptors.