Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Machine Learning Based Statistical Prediction Model for Improving Performance of Live Virtual Machine Migration.

Title:
Machine Learning Based Statistical Prediction Model for Improving Performance of Live Virtual Machine Migration.
Source:
Journal of Engineering (2314-4912); 4/10/2016, p1-9, 9p
Database:
Complementary Index

Weitere Informationen

Service can be delivered anywhere and anytime in cloud computing using virtualization. The main issue to handle virtualized resources is to balance ongoing workloads. The migration of virtual machines has two major techniques: (i) reducing dirty pages using CPU scheduling and (ii) compressing memory pages. The available techniques for live migration are not able to predict dirty pages in advance. In the proposed framework, time series based prediction techniques are developed using historical analysis of past data. The time series is generated with transferring of memory pages iteratively. Here, two different regression based models of time series are proposed. The first model is developed using statistical probability based regression model and it is based on ARIMA (autoregressive integrated moving average) model. The second one is developed using statistical learning based regression model and it uses SVR (support vector regression) model. These models are tested on real data set of Xen to compute downtime, total number of pages transferred, and total migration time. The ARIMA model is able to predict dirty pages with 91.74% accuracy and the SVR model is able to predict dirty pages with 94.61% accuracy that is higher than ARIMA. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Engineering (2314-4912) is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)