Treffer: ComboRT: A New Approach for Generating Regression Test Cases for Evolving Programs.

Title:
ComboRT: A New Approach for Generating Regression Test Cases for Evolving Programs.
Source:
International Journal of Software Engineering & Knowledge Engineering; Aug2016, Vol. 26 Issue 6, p1001-1026, 26p
Database:
Complementary Index

Weitere Informationen

Regression testing is essential to ensure software quality during software evolution. Two widely-used regression testing techniques, test case selection and prioritization, are used to maximize the value of the continuously enlarging test suite. However, few works consider both these two techniques together, which decreases the usefulness of the independently studied techniques in practice. In the presence of changes during program evolution, regression testing is usually conducted by selecting the test cases that cover the impact results of the changes. It seldom considers the false-positives in the information covered. Hence, the effectiveness of such regression testing techniques is decreased. In this paper, we propose an approach, ComboRT, which combines test case selection and prioritization together to directly generate a ranked list of test cases. It is based on the impact results predicted by the change impact analysis (CIA) technique, FCA-CIA, which generates a ranked list of impacted methods. Test cases which cover these impacted methods are included in the new test suite. As each method predicted by FCA-CIA is assigned with an impact factor value corresponding to the probability of this method to be impacted, test cases are then ordered according to the impact factor values of the impacted methods. Empirical studies on four Java based software systems demonstrate that ComboRT can be effectively used for regression testing in object-oriented Java-based software systems during their evolution. [ABSTRACT FROM AUTHOR]

Copyright of International Journal of Software Engineering & Knowledge Engineering is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)