Treffer: Robust Geographically Weighted Regression with Least Absolute Deviation Method in Case of Poverty in Java Island.
Weitere Informationen
Geographically Weighted Regression (GWR) is a development of an Ordinary Least Squares (OLS) regression which is quite effective in estimating spatial non-stationary data. On the GWR models, regression parameters are generated locally, each observation has a unique regression coefficient. Parameter estimation process in GWR uses Weighted Least Squares (WLS). But when there are outliers in the data, the parameter estimation process with WLS produces estimators which are not efficient. Hence, this study uses a robust method called Least Absolute Deviation (LAD), to estimate the parameters of GWR model in the case of poverty in Java Island. This study concludes that GWR model with LAD method has a better performance. [ABSTRACT FROM AUTHOR]
Copyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)