Serviceeinschränkungen vom 12.-22.02.2026 - weitere Infos auf der UB-Homepage

Treffer: Portable Implementation of Postquantum Encryption Schemes and Key Exchange Protocols on JavaScript-Enabled Platforms.

Title:
Portable Implementation of Postquantum Encryption Schemes and Key Exchange Protocols on JavaScript-Enabled Platforms.
Source:
Security & Communication Networks; 9/13/2018, p1-14, 14p
Database:
Complementary Index

Weitere Informationen

Quantum computers have the potential to solve some difficult mathematical problems efficiently and thus will inevitably exert a more significant impact on the traditional asymmetric cryptography. The National Institute of Standards and Technology (NIST) has opened a formal call for the submission of proposals of quantum-resistant public-key cryptographic algorithms to set the next-generation cryptography standards. Compared to powerful machines with ample amount of hardware resources such as racks of servers and IoT devices, including the massive number of microcontrollers, smart terminals, and sensor nodes with limited computing capacity, should also have some postquantum cryptography features for security and privacy. To ensure the correct execution of encryption algorithms on any platforms, the portability of implementation becomes more important. As distinguished from C/C++, JavaScript is a popular cross-platform language that can be used for the web applications and some hardware platforms directly, and it could be one of the solutions of portability. Therefore, we investigate and implement several recent lattice-based encryption schemes and public-key exchange protocols including Lizard, ring-Lizard, Kyber, Frodo, and NewHope in JavaScript, which are the active candidates of postquantum cryptography due to their applicabilities and efficiencies. We show and compare the performance of our JavaScript implementation on web browsers, embedded device Tessel2, Android phone, and several JavaScript-enabled platforms on PC and Mac. Our work shows that implementing lattice-based cryptography on JavaScript-enabled platforms is achievable and results in desirable portability. [ABSTRACT FROM AUTHOR]

Copyright of Security & Communication Networks is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)